()

REFERENCE MANUAIL
TIME-SHARING SYSTEM

L. Peter Deutsch
Lexrry Durham
Butler W. Lampson

University of California, Berkeley

Document No. R-21
Revised October 22, 1968
Office of Secretary of Defense
Advanced Research Projects Agency
Washington, D. C. 20335

faud M fano

1.0
2.0

3.0

4.0

5.0
600
7.0

8.0

9.0

- 10.0

11..0

TABLE OF CONTENTS

Introductory « « « « ¢ v o ¢« o« 4 « & o

The Scheduler. « « « « « « « o o + « &
PAC TABLE., . . v ¢ ¢ 4 ¢ ¢ o o o o o &
Phantom user queue entry
Forks and Job8 « « « « o ¢« ¢ ¢ 4 o o &
3.1 Creation of Forks . . « « « + « .
Hierarchy of Processes . . . « « « « o
3.2 Memory Acqguisition.
3.3 Panic Conditions. « « .« .
3.4 Jobs. oo
Job Tables « . « 4 v ¢« ¢ ¢ ¢ ¢ o o .«
Program Interrupts
The Swapper and Memory Allocation. . .
Miscellaneous Features
Teletype Input-Oubput. « . + .

TELETYPE SYSTEM POINTERS . . . « « « « . .

TEIETYPE TABm . . » . L] L] » [L] . . L]

TETETYPE BUFFERS « + « + « « + « o+ « .
Drum end Buffer Organization; Devices. . . .
8.1 File Storage on the Drum.

8.2 File Buffers. . . « « « « + . .
8 . 3 DeViCﬁS e & ® & s & a e s 8 ® o @
Layout of a File Buffer.

Format of ean Index Block . . . « « « + « &

Device Indexed Tebles . . + « « « + &
Sequential Files « . « + . .

9.1 Sequential Drum Files
9.2 Other Sequential Files.

9.3 File Control Blocks . . o« « . . .
9.4 Permanently Open Files.

Random Drum Files. . « ¢ + o ¢ o o o o
10.1 Direct Drum Access . . .+ . « « . .

Subroutine Files8 . « o ¢ & ¢ o o 0 s

1-1
2-1

3-1
3-1

3-l
35
3-7.
3B

b1

6-1
7-1
TA
7B
7C
8-1
8-1
8-2
8-3

8B
9-1
9-1
9-7
9-11
9-11
10-1
10-3
1l-1

12,0 File Naming System « v v ¢« v ¢« v « 4

12.)2 File Naming. « « « « + s « o o & &

l2.2 Accessing Other Users' Files, Special Groups

12.3 Pseudonyms . . . ¢ .+ s ¢ . o4 e . .
12.4 Doing I/0 to Files, File Numbers .
12.5 Opening Input Files.

TAFE or PERMANENT FILES. « . .+ .

SCRATCH FILES. .
BUILT" m FIIJES « & s s e e o s s e &

. e . . . o

SPECIAL GROUPS . . . + v o & « & .« e
PSEUDONYMS. o « v v & o o « o o o o o o
FILE DIRECTORY DESCRIPTION . . + + + « . .
USER DIRECTORY DESCRIPTION
12.6 Opening Output Files

12.7 Miscellaneous File Operations. . .
12.8 Opening Scratch Files.

12.9 Format of the File Directory, Some
Details » . - L] L[] L] . . L] L4 . * L]

Implementation

-

. .

. .

s . e .

.

e » .

12.10 Miscellaneous Services

13.0 Miscellaneous Executive Features
1.0 String Processing System

4.1 String Pointer ILoed and Store Operations.

14.2 String Read and Write Operations .
14.3 String Compare Operations . . .

14.4 String Input/Output.

14.5 Hash Table Tookup Instructions . .

15.0 Floating Point Instructions.

15.1 Floating Point Representation. . .
15.2 TFloating Point Arithmetic.

15.3 Input/Output Formats and Conventions

)

-

15.4 Input/Output Operations

BRS MBIE. . L4 L] L) L] . L] " * * L] L4 L)
SYSTEM PROGRAMMED OPERATORS. . . + . + . . .

. .

. s

.

.

12-1
12-2
12-4
12-5
12-5
12-6
12A-1
124-1
12A-1
12A-2
12A-2

12A-3

12A-kL
12-8

12-10
12-12

12-13
12-14
13-1

kel

-1
141
14-3
-3
-k

15-1
15-2
15-3
15-k
A-1
B-1

1.0 Introductory

The Berkeley Time-~Sharing System is divided into three major
varts: The monitor, the executive, and the subsystems. Only
the first two of these are discussed‘in detail in this manual.

The manual attempts to describe exhaustively all the features

of the monitor and in additlion to give a number of implementation
details. It also describes those features of the executive which
can be invoked by a program.

We use the word monitor to refer to that portion of the system
which is concerned with scheduling, input-output, interrupt
processing, memory allocation and swapping, and the control of
active programs. The executive, on the other hand, is concerned
with the control of the directory of symbolic file nemes and
backup storage for these files, and various miscellaneous matters.
Other parts of the executive handle the command language by

 which the user controls the system from his teletype, the

identification of ugers and specification of the limits of
thelr access to the system. These subjects are discussed in
the executive reference manual, Document R-22.
The next ten sections of this manuel discuss various features
of the monitor. The remeining sections deal with the executive.

\ /
5 /
N

2.0 The Scheduler

The primary entities with which the time-sharing system is

concerned are called active programs. Each active program is an

abstract object capable of executing machine instruétions. At
least one active program is associated with each active user, but
a user may have many programs, each computing independently under
his control.

An active program is defined by its entry in the program

active table (PAC table or PACT). This table contains all of the

information required to specify the instantaneous state of the
extended computer which the user 1s programming, except for that
contained in the user's memory or in the system's permenent
tables. Thevstructure of a PACT entry is displayed on the
following page, together with brief notes about the significance
of the various items. These matters will be explained in more
detail in the following few sections. It will be observed that
PACT contains locations for saving the program counter and the
contents of the active A, B and X registers. It also contains
two pseudo-relabeling registers for the user. A third one, which
specifies the monitor map, is kept in the job tables. The matter
of pseudo-relabeling 18 discussed in detail in Section 5. There
is a wbrd called PTEST which determines the conditions under
which the program should he reactivated if it is not currently
running. The panic table address in PTAB and the three pointers
called PFORK, PDOWN and PPAR are discussed in Section 3 on forks.
The word called PTAB contains in bits 2 through 8 the number
of the Jjob to which this program belongs. The top of PQU contains
information about the amount of time for which the program is
allowed to compute before it is dismissed. A Jjob table called QUR
countfthe number of clock cycles remaining before the program is

dismissed, end three bits of QUTAB point to a table which specifies

the length of time which the program should be allowed to run
when it is activated. All times in the discussion are measured
in periods of the 60-cycle computer clock.

PNEXT

PL

PA

PB

RL1

RL2

PPTR

PTEST

PQU

PIM

PAC TABLE

next queue or next program in queue

file # of 8 :
subroutine |O saved (P)
file

=
O
<

saved (A)

saved (B)

sa&ed (x)

first pseudo-relabeling register

second pseudo-relabeling register

0 11112 23
PDPWN PFPRK

000 activation 8 o 0 test word address, or other 23
condition relevant parameter

Py e :1E) W Y 53
x| B N QUTAB PPAR

BR: 8] o 23
M 0 Jjob number ‘0 panic table address

w7 5| &l - 23
TIW|T| M

UM = user mode (1) or system

OV = overflow

PDPWN = PACT address of lower fork (if any)

PFORK = PACT eddress of upper fork (if any)

PPAR = PACT address of parallel fork (ends with 0)

QUTAB = address of word in table indicating gquantum lengths

EX = executlive type program EB = exec BRS
QN = saved queue number if on QOV TW

[

waiting for termination

#

IEM = interrupt enabled mask NT = non-terminable

IM = local memory EM = destroy memory when fork

is terminated
MT = add no memory

2-2

A progrem is allowed to run for a fixed period of time, after
which 1t is dismissed if any other programs are ready to run. This
time is called a long quantum. It may be different for different
programs. In fact, the size of the long quantum is determined by
the entry in QTAB which 1is pointed to by the progi'am's QUTAB in PACT.

When a program is activated, it is first allowed to run for a
short guantum. During this time it cannot be dismissed except by its
own request. The length of the short quantum is tentatively going
to be the same for all users. It is put into a word called TIME;
the long quantum is also put into & word called TTIME et this time.
Both ere decremented at every clock cycle.

When TIME goes negative, a word called ACTR is checked to
determine whether any program which is dismissed for I/O can be
run. If not, the program is allowed to continue. At each subsequent
clock cycle the program mey be dismissed if any programs dismissed
for I/0 are ready to run. It may also be dismissed when the long
quentum is exhausted if any other pi'ograms are walting to run. In
either case it 1s said to be dismissed for quantum overflow. If
ACTR indicates that another program dismissed for I/O is ready to

.run at the end of the short quantum, the progrem is also dismissed

for quantum overflow.

- In order to allow an efficient implémentation of this scheme,
AC'JZR' is increinented by every interrupt routine vfhieh takes action
allowing & progrem which is waiting for I/O to run. ACTR is set
to ~1 when a program 1s activated.

When a program is dismissed for I/0, TTIME is put into QUR.
When the program is reactivated, TTIME is set from QUR. TIME is reset
to the full short gquantum. That is, the long quentum is allowed to
run down while e program computes, regerdless of whether it has to
wait for I/O between computations. On the other‘h‘a.nd » & program 1s
always given a full short quantum. If a program is dismissed for
quantum overflow, it is given a new long quantum whén it 1s reactivated.

There are two operations available to the user which are
connected with the quantum overflow machinery. BRS 45 causes the
user to be dismissed as though he had overflowed his quantum. ‘

BRS 57 guarantees to the user upon return at least 16 msec of

2-3

uninterrupted computation. This feature is implemented by dismissing
the user if less than 16 msec remain in his quantum.

Ordinarily, the code which is being executed at any particular
instant is that'belonging to the program which is currently active.
This situation may be disturbed, however, by the occurrence of
interrupts from I/O devices. These interrupts cause the computer
to enter system mode and are processed entirely independently of the
currently running progream. They never take direct action to disturd
the running of this program, although they may set up conditions
in memory which will cause some other program to be activated when
the presently rumning one is dismisged. Interrupt routines always
run in system mode. Other code which may be running which may not
belong to the program currently active is the code of system
programmed operators or BRS routines. These routines are not
re-entrant and therefore should not be dismissed by the clock. To
ensure that they will not be, the convention is established that
the clock will not dismiss a progrem rumning in system mode. In
order to guarantee that a user program will not monopolize the
mechine by executing a large number of SYSPOPs, the user mode trap
is turned on when the clock indicates that a program is to be
dismissed. The trap will occur and cause dismissal as soon as the
program returns to user mode.

The PACT word called PTEST conteins the activation condition
for a currently inactive program. The condition for activation
is contained in the 6 opcode bits of this word, while the address
field normally contsins the sbsolute address of a word to be
tested for the specified condition. (ﬁhis word is usually something
like TTYBRK for & user's teletype) It is possible, however, for
the address to contain a time count, in the case where the activation
condition 1s that a certain amount of time should elapse. It is also
possible for the address to hold a mask indicating which program
1nterrupt'has occurred. The following activation conditions are possible:

Word greater than O

Word less than or equal to O

Word greater than or equal to 0

Word less than or equal to teletype early warning

Special test. The address points to a special activation
test routine.

Interrupt occurred. The address contains the number of
the interrupt which occurred.

i FwPOHO

2-h

dead

running

BRS 31

BRS 106
executive HRS
5 BRS 109

T Special: address =

F w M = O

11 Bit 1 of word is 1 (buffer ready)

12 Word less than zero

An executive program can dismiss itself explicitly by putting a queue
number (O to 3) in X and a dismissal condition in B and executing BRS 72. The

address of a dismissal condition must be zbsolute.

There is normally one running program in the system, i.e., a program which
is executing instructions, or will be executing instructions after the currently
pending interrupts have been processed. An active program'(i.e. a PACT entry)
which 1; not running is said to be dismissed, and is kept track of in one of
two ways.

1) If it hés dismissed itself with BRS 31, 106 or 109 (cf. section 5) it is
said to be in ;éggg and is pointed to only by the PFORK, PDOWN, and PPAR of the
neighboring programs in the fork structure.

2) If it has been dismissed for any other reason, it is on one of the
scheduler queues. There are four queues of dismissed programs. In order, they are:

QTT programs dismissed for teletype input/output

QI0 programs dismissed for other I/O

Q8Q programs dismissed for exceeding their short quenta

QQE programs dismissed for exceeding their quanta.
Programs within tﬁe queues are chained together in PNEXT, and PNEXT for the last
program in each queue points tq the beginning of the next queue.

Whenever it is time to activate a new progrem, the old program is put on
the end of the appropriate queue. The séheduler then begins at QTI and
scans through the qﬁeue structure looking for & program whose activation

condition is satisfied. When one is found, it is removed from the queue

1

3 » - \2

25

structure and turned over to the swapper to be read in and run. If therev
are no programs which can be activated the scheduler simply continues
scanning the queue structure.

Programs reactivated for various reasons having to do with forks
(interrupts, rubouts, panics) are put onto QIO with an iﬁmediate
activation condition. They therefore take priority over all programs
dismissed for gnantum overflow.

There is a permanent entry on the teletype queue for an entity called
the phantom user. The activation condition for this entry is a type U4
condition which tests for two possibilities:

2) the cell PUCTR is non-zero

b)three seconds have elapsed since the last activation of the phantom
user for this condition.

When the phantom user is activated by (b), it runs around the system checking
tha£ everything is functioning properly. In particuler, it checks that the
W-buffer has not been waiting for en interrupt for an‘unuSual length of time,
and that all teletype output is proceeding normelly. Deﬁails of this procedure
sre described in sections 9 and 7.

If the phantom user is activated by (a), it runs down the phantom user

queue looking for things to do. A phantom user queue entry is drawn on page

2B; it is easentiélly a very sbbreviated PAC table entry. Such an entry is
made when the~gyatem has some activity which it wants to carry out more or

less independently of any user PAC table entry: tests for tape ready (on
rewind) end card reader ready, and processing of rubouts (an interrupt routine
kind of activity, but too time-consuming). The second word of the entry is the
activation condition. PUCTR contains the number of entries on the phantom

user queue.

2B

Pointer to next entry

819 23
test number routine address
1 laparamete fo 23
r for
PACPTR‘for user routine

Phantom user queue entry

3-1

= _Forks and Jobs

3.1 Creation of Forks

A program may create new, dependent, entries in the PAC table by
executing BRS 9. This HRS takes its argument in the A register, which
contains the address of a panic table, a 7-word teble with the following
format:

Piogram counter

A register

B registef

X register

First relabeling register

Second relasbeling register

Status .

(») The status word mey be:
-2 dismissed for input-output ‘b
-1 running

O dismissed on rubout or BRS 10 'f

! i | - AN f")/ “(f Fit 1 ey T

1l dismissed on illegal instruction panic o paw el -
2 dismissed on memory panic (
The panic tﬁble address must not be the same for two forks of the same program,
or overlap & page boundary. If it is, BRS 9 4is illegal. The first 7 bits of
the A registen hawe the following significance:
0 make fork executive if current program is executive

1 set fork relabeling from panic table. Otherwise use current
relebeling '

2 propagate rubout assignment to fork (see BRS 90)

(:} 3 m#ke fork fixed memory. It is not allowed to obtain any more
memory than it is started with.

i

6
10.

v
(4]
g g2
TR)
5 A 2
| S
ol «l ol w1 o} v o
o+
—
e
~t+—
>l]| 5 e >} o -
o ™

Hierarchy of Processes

c

J

3-2

4, make fork local memory. New memory will be assigned
to it independently of the controlling fork.

5. meke fork ephemeral memory. Memory that it acquires
will be released when the fork terminates.

6. set interrupt mask from seventh word of panic table.

When BRS 9 is exécuted, a new entry in the PAC table is
created. This new program is said to be a fork of the program
creating it, which is called the controlling program. The fork
is said to be lower in the hierarchy of forks than the controlling
program. The latter may itself be & fork of some still higher
program. The A, B and X registers for the fork are set up from
the current contents of the panic table. The address at which
execution of the fork is to be started is also taken from the
penic table. The relabeling registers are seﬁ up either from
the current contents of the panic table or from the relabeling
registersfof the currently running program. An executive program
may change the relabeling as it pleases. A user program is
restricted fo chenging relabeling in the manner permitted by
BRS 4. The status word is set to -1 by BRS 9.

The fork structure is kept tract of by pointers in PACT.
For each progrem PFORK points to the controlling fork, PDOWN
to one of the subsidiary forks, and PPAR to a fork on the same
level. All the subsidiary forks of a single fork are chained
in o list. ‘A'complex situation is shown on the previous page.
The arrows indicate the various pointers.

The program executing e BRS 9 continues execution after the
instruction. The fork established by the BRS 9 begins execution
at the location specified in the panic table and continues
independehtly until it is terminated by a panic as described
below. It is connected to its controlling program in the
following three ways:

1) The controlling program may examine its state and
control 1ts operation with the following six instructions:

C BRS 30

BRS 31

BRS 32

3-3

reads the current status of a suﬁsidiary fork into
the panic tsble. It does not influence the operation
of the fork in any way. »

causes the controlling program to be dismissed until
the subsidiary fork causes a panic. When it does, the
controlling program is reactiveted ét the instruction
following the BRS 31, and the panic table contains the

status of the fork on its dismissal. The status is also

1t

. f; F,/’
. put into X. A comingdod 5 1,‘(({5"{'\/ oy

causes a subsidiary fork to be unconditionally terminated

and its status to be read into the panic table.

All of these insatructions require the panic table address of the fork in A.

<:\ They are illegal if this address is not that of a panic table for some fork.

BRS 31 and BRS 32 return the status word in the X register, as well as

leaving it 4n the panic table. This mekes it convenient to do an indexed

Jump with the contents of the status word. BRS 31 returns the panic table

address in A.

BRS 106

BRS 107
BRS 108

causes the controlling program to be dismissed until any

subsidiary fork causes a panic. When it does, the

controlling program is reactivated at the following
instruction with the panic table address in A, and the

panic table contains the status of the fork at its dismissal.
causes BRS 30 to be executed for all subsidiary forks.

cauges BRS 32 to be executed for all subsildiary forks.

2) If interrupt 3-is armed in the controlling fork, the termination
of any subsidiary fork will cause that interrupt to occur. The interrupt
takes precedence over a BRS 31. If the interrupt occurs and control is |
returned to a BRS 31 after processing the interrupt, the fork will be
dismissed until tﬁe subsidiary fork apecified by the restored (A) terminates.
3) The forks can share memory. The creating fork can, as already
indicated, set the memory of thé subsidiary fork when the latter is started.
In addition, there is some interaction when the subsidiary fork attempts
to acquire memory.

3.2 Memory Acguisition

If the foik addresses a block of memory which is not assigned to it,
the following action is teken: a check is made to deterﬁine whether the machine
size specified by the user (cf. Document R-22) has been exceeded. If so, a
memory panic (see below) is generated. If the fork is fixed memory, a memory
panic is'also generated. Otherwise a new block is assigned to the fork so
that the illegal address becomes iegal.v For a local memory fork, a new
block is always assigned. Otherwise, the following algorithm is used.

The number, n, of the relabeling byte for the block addressed by the
instruction causihg the memory trap is determined. A scan is made upwards
through the fork structure to (and including) the first local memory fork.

If all the forks encountered during this scan have Rn (the Nth relabeling
byte) equal to O, a new entry is created in PMT for a new block of user
memory. The address of this entry is put into Rn for‘all the forks

encountered during the acan.

3-5

If a fork with non-zero Rn is encountered, its Rn is propagated
downward to all the forks between it and the fork causing the trap. If
any fixed memory fork is encountered before a non-zero Rn is found, a
memory panic occurs.

This arrengement permits a fork to be started with‘less memory than
its controlling fork in order to minimize the amount of drum swepping
required during its execution. If the fork later proves to require more
memory, it can be reassigned the memory of the controlling fork in a
natural way. It‘is, of course, possible to use this machinery in other
ways, for instance to permit the user to acquire more than 16K of memory,
and to run different forks with non-overlapping or almost non-overlapping
memory .

<;> ‘ 3.3 Panic Conditions

The three kinds of panic condition which may cause a fork to be

terminated are listed in the description of the status word above. When any
of these conditions occurs, the PACT entry for the fork being terminasted is returned
to the free program list. The status of the fork 1s read into its panic table
in the controlling fork. If the fork being terminated has a subsidiary fork,
it too is terminated. Thié process will of course cause the termination of
all the lower forks in the hierarchy.

The panic which returns a status word of zero is called a program panic
and may 5e caused by either of two conditions:

~A) the rubout:button on the controlling teletype is pushed. This

terminates some férk with a program panic. A fork may declare that it is

the one to be terminated by executing BRS 90. 1In the ab#ence of such a

declaration the highest user fork is terminated: When a fork is terminated

in this way its controlling fork becomes thégégéjto be terminated. If a user

fork is terminated by rubout the telefype input buffer ié cleared. If the

controlling fork of.the one terminated 1s executive, the output buffer is also cleared;
If the fork which shouid be terminated by rubout has armed interrupf 1,

this interrupt will occur instead of a termination. The teletype buffers will

not be affected. If there is only one fofk active, control goes to the

location EXECP in the executive. This éonsideration is of no concern to the

user. FExecutive programs can turn the rubout button off with BRS 46 and turn

it back on with BRS 47. A rubout occurring in the meantime will be stacked.

A second one will be ignored. A program which is running with rubout turned off

is said to be non-terminable and cannot be terminated by a higher fork. BRS 26
skips if there is a rubout pending. o

If two rubouts occur within about .12 seconds, the entire fork structure
will.be cleared snd the job left executing the top level executive fork. This
device permits # user trapped in a malfunctioning lower fork to escape. Closely
spaced rubouts can be conveniently generated with the repeat button on the teletype.

- B) A BRS 10 mey be executed in the lower fork. This condition can be

distinguished ffom a panic caused by the rubout button oﬁly by the fact that
in the former case the program counter in the panic table points‘to a word
containing BRS 10. |

As an exténaidn of this machinery, there is one way in which several forks
may be terminated at once by a lower fork. This may Ee done by BRS 73, which
provides a count in the A register. A scan is made upward through the fork
structure, decrementing this count by one each time a fork is passed. When

the count goes to O, the scan is terminated and all forks passed by are

3-7

terminated. If an executive program is reached before the count
is O, then all the user programs below it are terminated.

An executive program can clear the fork structure of a job
by putting the job number in A and executing BRS 22. The effect
is as though enough rubouts had occurred to send the job back
to the top-level executive fork. .

The panic which returns a status word of 1 is caused by the
execution of an illegal instruction in the fork. Illegal instructions
are of two kinds: :

1) Machine instructions which are privileged

2) SYSPOPs which are forbidden to the user or which have been

provided with unacceptable arguments.
If interrupt 2 is armed and the fork is executive, interrupt 2 will
occur instead of sn illegal instruction panic.

A status word of 2 is returned by a memory panic. This may be
caused by an attempt to address more memory than is permitted by
the machine size which the user has set, or by an attempt to store
into a read-only block. If interrupt 2 is armed, it will occur

- instead of the memory panic.

3.4 Jobs

Every complete fork structure is associated with a job, which
is the fundamental entity thought of as a user of the system, from

. the system's own point of view. The Job number appears in the PAC

table entry for every fork in the job's fork structure. In addition
there are several tables indexed by Job number. These are shown

on page 3B, and indicate more or less what it is that is specifically
associated with each Jjob.

TSDA

TTNO

ETTB

DBA

QUR

drum address of TS block
teletype associated with this job
amount of CPU time used

drum blocks available

time left in long quantum

Job Tables

4.0 Program Interrupts

A facility is provided in the monitor to simulate the
existence of hardware interrupts. There are 20 possible interrupts;
four are reserved for special purposes and 16 are avallable to |
the progremmer for gemeral use. A fork may arm the interrupts
by executing BRS 78 with a 20-bit mask in the A register. This
causes the appropriate bits in PIM to be set or clesred according
to whether the corresponding bit in the muak 1a lor O. Bit L
of A corresponds to interrupt number 1, ete. No other action is
teken at this time. When an interrupt occurs (in a manner to
be descridbed) the execution of an SBRM* to location 200 plus the
interrupt number is simulated in the fork which armed the interrupt.
Note that the program counter which is stored in the case is
the location of the instruction being executed by the fork
which is interrupted, not the location in the fork which causes
the interrupt. The proper return from an interrupt is a BRU
to the location from which the interrupt occurred. This will do
the right thing in all cases including interrupts out of input-
output instructions. |

A fork may genérate an interrupt by executing BRS 79 with
the number of the desired interrupt in the A register. This
number May not be one, two, three or four. The effect is that
the fork structure is scanned, starting with the forks parallel
to the one causing the interrupt and proceeding to those sbove
it in the hierarchy (i.e., to its ancestors). The first fork
encountered during this scén with the sppropriate interrupt mask
bit set is interrupted. Execution of the program in the fork
causing the interrupt continues without disturbance. If no
interrupteble fork is found, the interrupt instruction is treated
as a8 NOP;'otherwise, it skips on return. '

Interrupts 1 and 2 are handled in a special way. If a fork
arms interrupt 1, a program panic (BRS 10 or rubout button) which
would normelly terminate the fork which has armed interrupt 1,
will instead cause interrupt 1 to occur, that is, will cause

o

on.

k-2

the execution of en SBRM* to location 201. This permits the
progremmer to control the action taken when the rubout button
is pushed without establishing a fork specifical;y'for this
purpose. If pushing the rubout button causes an interrupt to
occur rather then termineting a fork, the input‘buffer will not
be cleared. ’

If a memory penic oceurs in a fork which has armed interrupt
2, it will cause interrupt 2 to occur rather than terminating
the fork. If an illegal instruction panic occurs in an executive
fork which has armed ihterrupt 2, 1t will cause interrupt 2

 to occur rather than terminating the fork.

Interrupt 3 is caused, if armed, when any subsidiary fork
terminates. Interrupt 4 is caused, if armed, when any input-
output condition occurs which sets a flag bit (end of record,
end of file and error conditions can do this).

Whenever any interrupt occurs, the corresponding bit 1n‘
the interrupt mask is cleared and must be reset explicitly if
it is desired to keep the interrupt on. Note that there is no
restriction on‘the number of forks which mey have an interrupt

To reed the interrupt mask into A, the program may execute
BRS 49.

@

5=-1

2:0 The Swapper and Memory Allocation

Pseudo-relabeling

The 940 hardware allows the user's address space to be
fragmented into eight pages of 2048 words each. This means
that the monitor must keep track of eight drum addresses for
each process. This is done by means of eight six-bit pseudo-
relabeling registers. Each of these registers is an index to
& table which contains the drum address of.the user's page.

This table is called the Private Memory Table (PMT) and
is held in the job's TS block. Each of the 64 entries in EMT
has the following format: -

¢S'ERE"

u lx ol® drum address p

#1234 17 23

EX - Process must be executive to reference the page.
RO - Read only (attempt to store wiil generate a trap).
SH - Shared. : ‘

EP - Will be destroyed when not in any map.

During the startup for each'user, the system copies the
first NCMEM (currently 35) entries out of a resident table
called the Shared Memory Table (SMT) into the new IMT. These
entries describe memory that most processes will need, such
as the monitor, the exec, and some of the subsystems. Thus,

& program has a maximum of (64 - NCMEM) privete pages.

When a program is run, his T8 block is swapped and its
pseudo-relabeling registers (in the PACT table) are used to
read out the proper bytes from PMT and comstruct a list of
drum pagés thet may need to be read from drum. When this list
has been constructed, the current state of core is examined to
determine whether any blocks need to be written out to make
room for these which must be read in. If so, a list of blocks

to be written out is constructed. The drum commend list is then

S

5-2

set up with the appropriate commands to write out and resd in
the necessary blocks. In the course of optimizing the drum
commands, the swapper may skip a sector. If this is the case,
it searches through the memory tables and wfites out & dirty
page in that sector. The scheduler then simply hangs up until
the swapping is complete. In the scan which sets up the drum

read commands,‘the swapper collects from DHT the actual

absolute memory addresses of the page called for by the pseudo-
relabeling and constructs a set of real relebeling registers
which it puts in two fixed locations in the monitor. It then
outputs these relabeling registers to the hardware and activates
the program. | . | ,

There are two BRS's which permit the user to read and
write his pseudo-relebeling. BRS 43 reads the current pseudo-
relebeling registers into A and B. BRS Ll takes the contents

of A and B end puts them into the current pseudo-relsbeling

registers. An executive program may set the relabeling registers
in arbitrar& fashion by using this imstruction. A user program,
however, may add or delete only blocks which do-not have the
executive bit set in PMI. This prevents the user from gaining
access to executive blocks whose destruction may cause damage

to the system. Note that the user is doubly restricted in his
access to real memory, firstly, because he can only access real
memory which 1s pointed to by his pseudo-relsbeling, and secondly,
because he is only allowed to adjust those portions of his pseudo-
relabeling which are not executive type.

The user can also set the relabeling of a fork when he
creates it. 8See Section 3. The same restrictions on manipulation
of executive blocks of course apply.

The system maintains a pair of relabeling registers which
the executive and various subsystems think of as the user's
program relebeling. For the convenience of subsystems, any
program can read these registers with BRS 116 and set them with
BRS 117.

O

5-3

The memory allocation algorithm is described on page 3-2.
A user can release a block which is in his current relebeling
by putting eny address in that block into A and executing BRS 4.
The PMT entry for the block is removed and in any other fork
which has this PMT byte in its relabeling, the byte is cleared
to 0. | ‘

Equivalent to BRS 4 is BRS 121, which takes a pseudo-
relabeling byte in A rather than an address. An inverse operation
is BRS 120, which takes a pseudo~-relabeling byte in A, generates
an illegal instruction trap if the corresponding PMT entry is
occupied, and otherwise obtains a new page and puts it in that
entry. This ia an exec-only operation and is implemented parti-
cularly for the Exec 'RECOVER FROM FIIE' operation. If A is O,
BRS 120 assigns a 2K page and skips; this operation is not exec-
only. .

Shared Memory. The syétem mainteins a table called the shared
memory table,(SMT) which describes all the memory which can be
shared between Jobs in the system. All the common subsystems

occupy positions in SMT, and some part of SMT 18 copied into

- each job's PMT permanently. To run a subsystem, the exec must

determine if the subsystem map is already in PMT (which it will
be if a;lfthe‘bytes are below NCMEM) and, if not, arrange for
the bytes to be put into PMT.

The exec meskes an entry in SMT by executing BRS 68 with a
byte nnmbér in A. The block addressed by the specified byte in
the pseudo-relabeling registers is put into SMT and the pointer
in SMT of +this byté is returned. By putting an index in SMT in
A and executing BRS 69, the SMT entry'is copied into the first

- free byte of e user's PMT and the byte number is returned in A.

The read-only bit in the SMT entry is propagated to the FMT
entry thus created. To delete an entry in SMT, the exec may
deliver its index in A and execute BRS 70.

The user may declare a block read-only by executing BRS 80
with the pseudo-relabeling byte number of the block in A and
with bit O of A set. To meke a block read-write, bit O of A

N

54

- should be clear. Bit O of A will be reset if the block was
- formerly read-write or set if it was formerly read-only. If
the program doing this is not an executive program, then the

block must not be an executive block. Only executive programs
may make a shared page read-write. ‘

The drum is divided into 84 bands, each containing 16,000
words arranged in 8 blocks of 2K each. Up to 72 of these bands
may be used by the swapper for progrem storage. A bit table is
maintained to indicate the availebility of 2K blocks in these
bands. The table consists of 8 words, each containing 24 bits,
one for each band. If a bit is zero, it indicates that the
block is in use. If it is set, the block is available. When
the user's memory is acquired, it is written as nearly as possible

- in adjecent blocks, 80 that it may be read in without undue drum

latency time. Rotational positions are chosen by adding, mod 8,
the user's job number to the PMT byte number of the new block.
It should be noted that whenever a user is activated, all

. of the memory in his current relabeling registers is brought in.

The user does, however, have considerable control over precisely
what memory will be brought in, because he can read and set his
own relasbeling registers. He may therefore esteblish a fork with
a minimal amount of memory in order to speed up the swepping
process if this is convenilent. ;

To make a block executive, execute BRS 56 with the same
argument es for BRS 80, make block read-only. This instruction
is legal only for executive type programs.

Real memory is housekept by means of several tables. The
most important of these is a table (hash)-indexed by drum address
which describes all those drum pages which are currently in

‘core. The Drum Hash Table (DHT) has more entries than core

peges. An entry has the following format:

Drum Core

F Address Address

¢ 18 27

F = Free entry

@

55

The core address field of DHT-indexes two tables called the
real memory table (RMT) and the real memory use count table (RMC).
An RMC entry is -1 if a page‘ié not in use; otherwise, it is one
less than the number of reaéons why 1t is in use. Every occurrence
of the page in the relabeling of a process which is running or
about to be run counts &s such & reason. In addition, other
parts of the system can increment an RMC word to lock a block in
core. No block with nonanegaﬁg;ggnmc will be used'by the sweapper.

The format of an RMT entry (one per real page) is

v s 6
2 Dy E | 9110 23
0|1 R {0 1
R{R|W|R address of DHT entry
g1 o rir{z|} responsible
YJPIPIT

RIP - drum read in progress
DIRTY ~ Page has been modified WIP - drum write in progress
ERRBIT - drum read error

There is one more table indexed by real memory, called the
real memory aging table. Whenever the swapper is entered, every
word in this table is shifted right one bit. All blocks which
show up in ﬁhe real relabeling coﬁputed from the pseudo-relabeling
with which the swapper was entered then have bit 1 turned on.

The blocks with lowest RMA are selected for swapping out; of
course, their RMC emtries must be negative.

M8 Lo acuhl through the real memory tebles and for each
wﬁﬁumﬁinmmnomorhnowtmm' If the page
18 not dirty, the PMT/SMT entry is marked as on drum and RMT is
emptied. . If the page is dirty, a write is started. This has the

' affect of foreing core and drum copies of most pages to correspond.

(M
@

O

6-1

6.0 Miscellaneous Features

A user may dismiss his program for a specified length of
real time by executing BRS 81 with the number of milliseconds
for which he wishes to be dismissed in A. At the first
availsble opportunity after this time has been exhausted, his
program will be reactivated. This feature is implemented with
a special activation condition and the value of the clock at
the time when a user is to be reactivated is kept in PA. The
activation condition causes the current value of the clock to
be compared with this value. When the clock becomes greater,
it is time to reactivate the progrem.

He can read the real-time clock into A by executing BRS 42.
The number obtained increments by one every 1/60th of a second.‘
Its absolute magnitude is not aignificant. He can read the
elapsed time counter in A by executing BRS 88. This number
is set to‘O when he enters the system and increments by 1 at
every 1/60th second clock interrupt at which his program is

running. .

To obtain the data and time, he can execute‘BRS 39. This
puts six 8-bit characters into AB. These characters contein,
in order, the year, month, day, hour (0-23), minute and second
at which the inatrﬁcﬁion is executed.

A user may dismiss his program until an interrupt occurs
or the fork in question ia terminated by executing BRS 109.

A progrem can test whether it 1s executive or not by
executing BRS 71, which skips in the former case.

An executive program can disﬁiss itself explicitly. See
Section 2.

There are some operations designed for so-called executive
BRSs, which operate in user mode with a map different from the
one they are called from. BRS 1lll retwrns from one of these

BRSs, transmitting A, Beand X to the calling program as it finds

them. BRS 122 simulates the addressing of memory at the location
specified in A, If new memory is assigned, it is put into the

c

6-2

relabeling of the calling progrem. A memory panic can occur,
in which case it appears to the calling program that it comes
from the BRS instruction.

BRS 141 reads the penic table of the caller, and BRS 142
sets the state from a table specified by X.

An executive program can cause an instruction to be executed
in system mode by addressing it with EXS.

@

7-1

7.0 Teletype Input-Output

We begin with an outline of the implementation of the
teletype operations. This may serve to clarify the exact disposal
of the characters which are being read and written. Every
teletype has attached to it a table which is shown in Figures
7A and TB. No buffers ere attached to the teletype unless
input from or output to the teletype is taking place. As
characters are output by the program, buffers are attached to
the telgtype. . These buffers are released as soon as they are
emptied by the teletype interface. On input buffers are attached
to the teletype as characters are received from the teletype,
and they are released as soon a8 the program empties them.

| Input and output buffers are logicelly and physically
independent, although they come out of the same buffer pool.

When a character is typed in on a teletype, it is converted
to internal form and edded to the input buffer unless it is
rubout on a controlling teletype. The treatment of rubouts
is discussed in Section 3. The echo routine address is then

obtained from TTYTBL and called. It figureas out what to echo

and whether or not the character is a break character. The
available choices of echos. and break characters are listed

" below. If the character is a bresk character, and if a user's

program has been dlsmissed for teleﬁype input, it will be
reactivated regardless of the number of words in the input
buffer. In the absence of a break character, the user's program
418 reactivated only when the input buffer is nearly full.

. If the teletype is in the process of outputting (T0S2 > -1)
then the character to be echoed is put into the last byte of
the buffer wnrQ which contains the input charescter. When the
character 1s read from the buffer by the program, the echo,
if any, will be generated. This mechanism, called deferred
echoing, permits the user to type in while the teletype is
outputting without having his input mixed with the teletype
output.

T-2

There are four standard echo routines in the system, referred
to by the numbers O, 1, 2 and 3. O is a routine in which the
echo for each character is the character itself, and all characters
are break characters. Routine 1 has the same echoes, but all
characters except letters, digits, and space are break characters.
Routine 2 again has the same echoes, but the only break characters
are control characters (including carriage return and line feed).
Routine 3 specifies no echo for any character, and all characters
are break characters. This routine is useful for a program
which wishes to compute the echo itself.

To set the echo routine, put the teletype number in X and
the echo routine number in A and execute BRS 12. Note that
BRS 12 is also used to turn on 8-level mode (see below). To
read the echo routine number into A, put the teletype number
in X and execute BRS 4O. This operation returns in A the word
listed as TTYTBL on page T7A.

To input a character from the controlling teletype (the
teletype on which the user of the program is entered) into
locetion M in memory the SYSPOP

I M (teletype character input)

is used. This SYSPOP reads the character from the teletype
input buffer and places it into the 8 rightmost bits of location
M. The remainder of location M is cleared. The character is
also placed in the A register, whose former contents are destroyed.
The contents of the other internal registers are vreserved by
this and all the other teletype SYSPOPs and BRS's

To outpﬁt a character from location M, the SYSFOP

. TCO M (teletype character output)

is used. This instruction outputs & character from the rightmost
8 bits of location M. In addition to the ordinary ASCII characters,

all teletype output operations will accept 135 (octal) as a
multiple blank character. The next character will be taken as
a blank count, and that meny blanks will be typed.
The TTYTTM cell in the teletype table is set to the current
value of the clock whenever any teletype activity (interrupt
or output SYSPOP) occurs. The top bit is left clear unless the
activity is a rubout input. This cell is checked by the
rubout processor to determine whether the rubout should reset
the job to the exec. See p. 3-6.
 Every teletype in the system is at ell times in one of
three states: ,
a) It may be the controlling teletype of some user's program.
Tt gets into this state when a user enters on it.
b) Tt may be attached to some user in a manner about to be
. described.
¢) It may be completely free.
The status of the teletype is reflected by the contents of TTYASG.
There are mechanisms to be described by which the usér may direct
output to any teletype in the system which is willing to accept
it and receive input from any teletype which is not free. If,
however, he wishes to have better control over a telgtype (for
instance, to prevent other users from accessinglit) he may attach
it by executing the instructions
‘ LDA =teletype number
BRS 27 :
If the indicated teletype is free, it is attached to the user whose
program executes the instruction, and the BRS will skip. Otherwise
the teletype status is not affected, amnd the BRS does not skip.
In the following discussion we will say that a teletype 1s attached
to a user even if it 18 the comtrolling teletype.
To release sn already attached teletype, execute the
instructions
'EDA =teletype number
BRS 28
If the specified telstype is not already attached to the user, this
is an illegal instruction and causes a panic. All atteched teletypes

are, of course, released when the user logs out.

O

7-b

‘A teletype becomes a controlling tgletype if it is dormant
and rubout is pushed on it. It can be returned to its dormant
state by BRS 112, which takes the Job number of the job associated
with the teletype in X. A job may terminate itself. This
operation also releases all teletypes attached to the job.

| The user may specify for his controlling teletype or for one
which he has attached, whether or not messages from outside will
be accepted, and whether or not input from outside will be
accepted. The former condition is governed by the accept
messages bit, the latter by the accept inmput bit. The accept
message bit controls execution of OST instructions and the setting
of teletype output links. The accept input bit controls execution
of STI instructions and the setting of teletype input links.

To set these bits, the user may execute

1pA «teletype number
LDA BITS
BRS >

The last bit of BITS will set the accept input bit, the next to
1a§t the accept messages bit. Setting or clearing these bits
will not affect any teletype links currently active.

To do input and output to specified teletypea (rather than
1mplic1tly to a controlling teletype as in TCI and TCO) the
SYSPOPs IST and OST are available. To input a character from
a speéiried teletype, execute the instruction

IST =teletype number (input from specified teletype)

which brings the chearacter into the A register. This instruction
is 1illegal unless the teletype is attached to the user. To

output a cheracter to_a specified teletype, execute the instructions

LDA =character :
08T =teletype number (output to specified teletype)
This instruction is 111@5&1 if the rollowing three conditions
are satisfied:
(1) The specified teletype is not attached to the user,
(2) The specified teletype does not have its accept messages
bit set,
(3) The progrim executing an instruction is & user rather
than an executive program. If these conditions are

75

satisfied, an illegal instruction panic will be generated.
Note that attached teletypes do not have the same status as
the controlling teletype for a user. In particular, pushing the
rubout button on an attached teletype will have no effect
The instruction

cI0 =teletype number + 1000
12 exactly equivalent to
IsT =teletype number.

The instruction
c1I0 =teletype nnmber + 2000

is exactly equivalent to

osT =teletype number.
This mechanism permits the user to do I/0 to specified teletypes
within the framework of the sequential file machinery.

The user has considerable control over the state of the
teletype buffers for the teletypes attached to him. In particular,
he may execute the following BR3's. ALl these take the teletype
number in X. Recall that -1 may be used for the controlling
teletype.

BRS 11 clesrs the teletype input buffer.

BRS 29 clears the teletype output buffer.

BRS 13 skips if the teletype input buffer is empty.

BRS 14 waits until the teletype output buffer is empty:

BRS 138 waits until a process gets dismissed because
the input buffer 1s empty.

There is one additional piece of machﬁnery vhich permits output
to go to a teletype other than the controlling teletype. This
machinery is implied by the top bits of TTYTBL, which specify
whether any link bits are set. Associated with each teletype are
two words called the absolute input link control word (ICW) and the
absolute output ILCW. Each of these words contains one bit for
each teletype in the system. If the bit for teletype m is set in
the input LCW for télﬁtype,n, every character which goes into n's
input buffer will also go into m's input buffer. If the bit is
set in the output ICW, every character which is output to n,
including echoes, will also be output to m.

@

7-6

Also associated with each teletype are relative ICW's for

input and output. The bits in these ICW's are set by BRS 23. Each

time any relative ICW is changed, the absolute LCW's are all
recomputed. The Boolean matrix formed by ‘the absolute input

(output) ICW's is the infinite product of the matrix of the relative

input (output) ICW's.
The instructions

LDX =teletype number
LDA =TABLE

1DB CTL

BRS 23

will set one of the relative ICW's for the indicated teletype.
TABLE is the address of a list of teletype numbers terminated
with -2. The bits of CTL are interpreted as follows:

0 Omoutput ICW
l=input ICW
1 O=clear all links first
| 1=do not clear links first

- O=get link bits for teletypes whose numbers
| are in the table.
l=clear link bits for teletypes whose numbers
, are in the table.
From the old relative ICW and the information supplied by BRS 23
a new relative ICW is created. New absolute ICW's for all
teletypes are then computed.

An output link can be set up between two teletypes only if
each of the teletypes satisfies at least one of the following
conditions:

a) It is the controlling teletype of the program executing

BRS 23

b) It is attached to the program

¢) Its accept messages bit is on (destination only)

4) The fork executing the BRS is executive,

An input link can be set only if the seme conditions are satisfied

for the sccept imput bit.

@

)

7-7

To clear all links, input and output, to or from a teletype,
execute
LDX =teletype number
BRS 24

Special provision is made for reading 8-bit codes from the
teletype without sensing rubout or doing the conversion from
ASCII to internal which is done by TCI. To switch a teletype
into this mode, execute

LDX =teletype number
LDA =terminal character + LOOO0000B
BRS c12

This will cause each 8-bit character read from the teletype
to be transmitted unchenged to the user's progrém., The teletype
cen be returned to normal operation by

1. Reading the terminal character specified in A, or

2. Setting the echo table with BRS 1l2. .
No echoes are generated while the teletype is in 8-level mode.
Teletype output is not affected.

A parsllel operation, BRS 8, is provided for 8-level -
output. BRS 86 returns matters to the normal state, as does
any setting of the echo table.

To simulate teletype input, the operation

STI =teletype number
ig available. STI puts the character in A into the input buffer
of the specified teletype. It is legal if the accept input bit
is on.

To steal teletype output, the operstion

~ 8TO =teletype number
tekes s charaéter from the teletype's output buffer and returns
it in A. ST0 is legal only if the accept input bit is on.

To disable output from a buffer to a teletype, execute
BKS 139 with the teletype number in X. T€ bit @ of A is 1,
the NO bit will be set; otherwise, the NO bit will be cleared.

TA

TELETYPE SYSTEM POINTERS

TTYOB Pointer to next available buffer in buffer pool
TTYORC Count of available buffers in buffer pool
TTYTBL NIN[A|S|S|I Ala |10 y
slolpi1liolL g % TiM address of echo routine 23
TTYBRK Waiting for break character when -lb
TTY Status
PACPTR of fork to terminate on rubout active
TTYASG 3 7 7T 7T 7 ‘ inactive
{]
19 controlling Job 23 attached
ROLCW Relative output link control word
RILCW Relative input link control word
TTYTIM [g value of clock when last action occurred on this tty
TTYDEV device (normelly physical teletype) using this buffer.
NS = not linked or 8-level AI = accept input
AM = accept message SI = 8-level input
IL = input linked S0 = B-level output
OL = output linked RB = last action was input of rubout
NO = don't output to TTY interface AP = accept_qutput links
AK =

accept input links

O

O

@

TIS2
TISL

TISH

TIS6

TIBBl

TIBB2
TIBIC
TOS2
TOS3

TOSY

TOSS
TOS6

TOBBl
TOBB2
TOBIC

TTYPN

TTYLN

B

TELETYPE TABLE

number of characters in input buffer
next availsble space in input buffer (pointer)

7 8 10 23
1 1 WORD ADDRESS
bits 7 and 8:

0 1 byte 1
1 0 byte 2
1 1 byte 3

next filled spece in input buffer (pointer with same format
as TISh)

deferred echo byte count. Input characters are echoed when
the NO‘bit is gset in TTYTBL and this count goes negative. It
is decremented when a character is taken out of the inpﬁt buffer.
word pointer to the oldest acquired input buffer: =0 no buffer
attached

word pointer to the last acquired input buffer

count of input buffer that can be acquired

number of characters in output buffer: -1 = inactive

< 0 = not in multiple blank mode; 400 = just saw 135

(multiple blank character); other = number of blanks

next filled space in output buffer (pointer same as TISk)

next available space in output buffer (pointer same as TISh)
< 0 = not terminated during output to links; > O = next

link that output hes to be sent to.

word pointer to oldest acquired output buffer; = O no buffer
attached

word pointer to last acquired output buffer

count ‘of output buffers that can be acquired

contains physicel teletype number associated with this buffer,
or UBT if no physical teletype attached

contains logical teletype buffer associated with this physical

teletype or zero (¥} if no buffer is attached.

@

TTYOC

TOBBL

TELETYPE BUFFERS

1 1. 2 2 3
BUFFER POOL POINTERS

i TOBB2 3 mogy | X1 1.4

2 2. 3 3. g

1X1l= byte count in word
N = word displacement in buffer.

FROGRAM OUTPUT BUFFER POINTERS

7C

TOS5

11 3.+4N

8.0 Drum and Buffer Organization; Devices

8.1 File Storage on the Drum

The drum is divided into two major sections, program swapping
and file storage. The organization of the program swapping ares
is discussed in Section 5. The file storage area is divided
into 256 word blocks which form the physical records for storage
of files. »

Every file has one or more index blocks which contain
pointers to the data blocks for the file. An index block is a
256 word block, as are all other physical blocks in the file
ares. Only the first 141 words of the index block are used,
however, for data storage. A couple of additional words are
used to chain the index blocks for any particular file, both
forward and backward. The index blocks for a file contain the
addresses for all the physical blocks used to hold information
for the file.

Available storage in the file area of the drum is kept
track of with a bit teble similar to the tsble used to keep
track of program swapping storage. Since there are sixty-four
26-word blocks around the circumference of the drum and &
meximum of 72 drum bands (out of the 84 available) may be used
for file storage, & 192-word bit table which contains 3 words
of 72 bits for each row of physical blocks suffices. If a
bit in this table is set, it indicates that the corresponding
block on the drum is in use. Again, as with progrem swapping
storage, the organization of this table makes it easy to
optimize the writing of files. This is done by putting consecutive
physical blocks in the file in alternating rows on the drum.

The intervening row between each two physical blocks provides
the time fof the channel. to fetch a new command and the heads
to switch. The result of this organization is that information
may be transferred from a file on the drum into core at one-
half core memory speed if conditions are right.

()

N

8.2 File Buffers

Every open file in the system with the exception of purely
character-oriepted files such as the teletype has a file buffer
associated with it. The form of this buffer is shown on page 8A.
Part (a) of this figure shows the buffer proper, and part (b)
shows the index block buffer and pointers associated with it.
Part (b) is not used only by drum files, but is present in all
cases. ‘

Each job has‘associated with it a temporary storage block,
which is always the first entry in the job's PMT. This block is
used to hold information about the user and for the system's
temporary storage. It also has room for three buffers. An
additional block may be assigned with room for five more buffers
if more than three files are open at one time. The pseudo-
relabeling for the extra bhuffer block and the TS block is held
in a table called RL3 which is indexed by job number, and is
put into tlhie monitor map whenever any fork belonging to that
Jjob is run. |

Note that the amount of buffer space actuelly used is a
function of the device attached to the file. In all cases the
two pointer words at the head of the buffer indicate the location
of the data. The first word points to the beginning of the
relevent date and is incremented as data are read from an input
buffer. The second word points to the end of the data on input
or end of the buffer on output or written in an output buffer.
When the buffer is in its dormant state, both words point to
the first data word of the buffer. Whenever any physical I/O-
operation is completed, the first pointer contains the address

of this word.

8.3 Devices

Every different kind of input-output device attached to the
system has a device number. The numbers applicable to specific

devices are given in Section 9; here the various tables indexed
by device number are described. The entries in these tables
addressed by a specific device number together with the unit

nunber (if any) and the buffer address, completely define the

file. All this information 1is kept in the file control block
(Section 4.3) which is addressed by the file number..

Page 8B shows the tables indexed by device number. Note
the multiplidity of bits which specify the characteristics of
the device.“Some of these call for comment. A device may be
common (shared‘by users, who must not access it simultaneously;
e.g., tape or cards) or not common (e.g., drum); this characteristic
is defined by NC. It may have units; e.g., there may be multiple
magtapes. The U bit specifies this. The DIU woid‘indicates
which file is currently monopolizing the device; in the case of
a device with multiple units, DIU points to a tuble called ADIU
which contains one word for each unit.

The major parameters of a device are:

- the opening routine, which is responsible for the operation -

necessary to attach it to a file.
- the GPW routine, which performs character and word I/O
- the BIO routine, which performs block I/O.

Minor pérameters are:

- physical record size (determining the prdper setting of
buffer pointers end interlace control words for the channel).

- the expected time for an operation; the swapper uses this
number to decide whether it is worthwhile to swap the
user out while it is taking place.

)

BFP
BBP

BDS

BLX

BCK -

pointer to first data word in buffer

pointer to last data word

1st data word

.

256th dete word

a) layout of a file buffer

drum address of data block, or @

‘drum address of data block, or [

pointer to next index block

pointer to previous index block

iog 2 (data block size/256)

file length

check sum

b) format of an index block

8a

f data block

-

8B

STIEVE QIXIANT FOTATC

usdo 03 pomolTe ATuo d8x3 (N

§3T2:D }DOTO uT

. ~ s)
sutynoiqus Sutuado ? T3 3Tes pogoadxe M 9
€2 gl 6 g € ¢ 1 ¢
i=1n (poppe Joqumu 31un sey) [Iay o3 saurod
0=1 T~ 0 30TASP STU} Fursn Jaqumu STIJ
tc ¢
aurqnox OId))
ge ot 6 g
(nIa 39s 7,uop *9°T) uoumiod jou DN Jaqunu vwws Jd9yos.
0
9218 pIodax Teorsiud n I9qumu JTUNn °Xew N
te gt 6 g € 2 2
andano Ino JI93Jnq saarnbea gg mIp WNg
Ia7Jng M dm §8300® wWopuRd XY PRRJUITIC JIBYD HD
- - T
suTyn0x WD | ¢ |mo|en |as | ¢ |xa|muafio | ¢
2 gt 8 £ 9 & w £ ¢z 9

6
muv

9sn Ul 30TA8D
nIa

aurgnox 0/ Jo0Iq
Adag

3ZIs JoJjnq
S40d

AUT4NOX
0/I 43308IBYD
I0 pIOK ANC

\)‘
Vs
C
i

9.0 Sequential Files

9.1 Sequential Drum Files

1.94% includes a major revision to the drum file éystem.
Basically, a file appears as an address space with an arbitrary
upper bound called its "length." The maximum possible length
is around four million words (22 bits). The file is internally
paged into an arbitrary number of datae blocks whose size may be
any power of two larger than 256 words.

The following discussion will be of interest to those who
need to make efficient use of large, randomly accessed files:

1. The data blocks are kept track of by the use of index blocks
cheined together. Each index block can describe about 1uf
data blocks. Rendom access will be slow if there are several
index blocks to chain through. A large data block size will
minimize‘this source of inefficiency.

2. Block trensfers are implemented in the most efficient manner,
with as much as possible of the data requested .transferred
directly into the user's memory. The slop on either end is
buffered in 26-word blocks. Programs cognizhnt of the
structure of their files can avoid all buffering. All word
operations use the 256-word buffer.

The user's access to an open file is housekept by meens of
a position pointer to the file. This pointer may be moved
explicitly by the user or implicitly by any of the I/O operations.
The I/O opérationa always leave the pointer pointing at the word
following the last transfer. CIO is a confusion factor.

When a file is opened, any of three types of access to that
file may be given to the user: read, write, or position. Fosition
access 18 intended to implement append-only files. You may not
move the pointer or perform random cperations unless‘you have

position access to the flle.

)

file opened as access given
sequential input r p
‘sequential output w

random read-only r p
‘random read-write r w P

The mechanisms for setting the length, data biock size,
or for moviﬁg the pointer are described under BRS 1431k,
BRS 66 deletes the contents of an open drum file. In the
case of a sequential output file, it sets its length to zero.
You must have write access to the file to use BRS 66.
BRS 67 takes & file number in A and deletes all trace of
the file. Use of this BRS is limited to the EXEC.
BRS 143, 1i4 have been implemented as general read and
set status of a thingy. The calling sequence is:
A: table address or data (depends on Bg)
If a table address, A is incremented to point to one
past the last word transferred.
X: thingy number
B: decodes as follows
‘bit P: @ if A hes data, 1 if A points to a table
bits 1-11: "type" of thingy :
bits 12-23: "attribute"
"type" 18 1 for a drum file, 2 for a job. No other thingies
have been implemented as yet.

For drum fileé, the attribute field specifies the following:

1. (Position) One may read or set the sequential I/O pointer.
The bottom 22 hits are the current word pointer, the top
two the character offset. (@@ means a word boundary.)

The offset must be $ if the pointer is set.
(Length). Reads or sets the length of a file.

3. (Sequential I/O mode) The sequential I/O operations (CIO,
WIO,BIO) are interpreted as input if the sequential mode is
g, output if the mode is 4B7.

9-3

4. (Capabilities) Opening a file may give read/write/position
access to the file. These bits may be read in bits 21-23.
If you try to set them, they are ANDed with the existing
capabilities.

5. (Data Block Size) Returns n where 2n+8 is the number of
words in'a data block. May be set only if the file length
is §. |

6. (User words) Each file in the system has five arbitrary
words associated with it. Anyone may read them but only
the exec may set them.

7. ("structure") A file may have voids in it. If you are
interested, you can find out where these are. BRS 143
returns the number of words from the current sequential
pointer to the next transition. It also moves the pointer.
If you are crossing a void part of the file with this

 operation, the sign bit of the number is turned on. Setting
<:> this ataﬁe with BRS 1h4 1s interpreted by releasing this
meny words beyond the pointer. This also moves the pointer.

8. (count data) Can only be read. Sets the pointer to the
beginning of the file.

9. (copy the index block) Can only be reed. Gives a copy of
the entire index block.

For jobs (type = 2) BRS 143 and 144 interpret the attribute field

thusly:

1. (files) Returns a bit word telling which files are open.
This word may not be set.

2. (PMT) Reads the private part of PMT.

@

@

C

9-4

The Exec opens a sequential drum file by the following

 sequence of instructions:

LDX =device number, 8 (input) or 9 (output)
LDA =unit number, address of first index block
BRS 1

If the file is opened successfully, the BRS skips; otherwige,
it returns without skipping. Use of this BRS is restricted to
executive'type‘programs. User programs may access drum files
only through the executive file handling machinery. BRS 1 can
also be used to open other kinds of files. The device and unit
numbers ere used to determine the physical location of the file.
See Section 9.2. .
Tf BRS 1 fails to skip, it returns in the A register an
indication of the reason:
-2 too many files open -- no file control blbcks or no
buffers avallable.
=1 device already in use. For the drum, produced by an
attempt to open a file for input if already open for
output or for output‘if already open at all.
0 no‘drum space left. This inhibits opening of output
files only.

See Section 9.2 for other error conditions. ‘

BRS 1 returns in the A register a file number for the file.
This file number is the handle which the user has on the file.
He may use it to close the file when he is done with it by putting
it in the A register and executing BRS 2. This severs his
connection with the file. BRS 2 is available only to
executive programs, user progreams should use BRS 20 instead.

To close all his open files an executive pfogram may execute
BRS 8. The dbrresponding operation for normal user programs is
BRS 17.

Three kinds of input-output may be done with sequential
files. Each of these is specified by one SYSPOP. Each of these
SYSPOPs handles input and output indifferently, since the file

g

9-5

must be specified as an input or an output file when it is opened.
It is not posSible to have a file open for both ihput and output
at the same time: +this may be circumvented by using random .
files. |

To input a single character to the A register or output it
from the A register, the instruction

CIO =file number

is executed. On input &n end-of-record or end-of-file condition
will set bits O and 8 or 7 in the file number (these are called
flag bits) and return a 134 or 137 character, respectively. If

interrupt 4 is armed, it will occur. The end-of-record condition
" occurs on the next input operation after the last character of
the record has been input. Note that an end-of-record condition
only occurs for type files and is of concern only to:the Exec.
The end-of-rile condition occurs on the next input operation
after the end of record, which signals the last record of the file.
The user mayfgenerate an end of record while writihg‘a file by
using the control operation to be described. ' |
To input a word to the A register or output it from the A
register,
WIO =file number |
is executed. An end-of-record condition returns a word of three
134 characters as well as setting the flag bit, and an end of
file returns & word of three 137 characters. If the condition
occurs when a pertially filled-out word is present, the word
is filled out with one of these characters. |
deing word and character operations will 1ead to peculiarities
and 1is not recommended. ‘
To input a block of words to memory or output them from
memory, thé instructions
LDX =first word address
LDA =pumber of words
BIO =file number
should be executed. The contents of A and X will be destroyed.

Q)

O

O

9-6

The A register at the end of the operation contains the first
memory location not read into or out of.

If the operation ceuses any of the flag bits to be set, it
is terminated et that point and the instruction fails to skip.
If the operation is completed successfully, it does Skip. Note
that a BIO cannot set both the EOR and the EOF bits.

BIO is implemented with considereble efficiency and is
capable of reading a file at one-half the maximum drum transfer
rate.

The flag bits (0 and 7) of the file number are set by the
system whenever end of file is encountered and clesred on any
input-output operstion in which this condition does not occur.
Bit O is aét on any unusual condition. In the case of a BIO
the A register at the end of the operation indicates the first
memory loéation not read into or out of. Bit 6 of the file
number may be set on an error condition. Whenever any flag bit
is set as a result of an input-output operation in a fork,
interrupt 4 will occur in that fork if it is armed.

The user may delete all the information in a drum file by
executing the instructions

LDA =file number

BRS 66
He may also eliminate the file entirely by giving an executive
command described in Document R-22, or via BRS 63 (vide infra).

The index block for a sequential drum file contains one
word for each physical record in the file. This word contains
the address on the drum of the physical record in the bottom
bits.

Three operations are available to executive programs only.
They are intended for use by the system in dealing*with file
nemes and executive commands.

A new drum file with a new index block can be created by
BRS 1 with an index block number of O in A. The file number is

C

O

9-7

returned in'A as usual end the index block number in X. The
initial settings of the r, w, and p cepabilities, and the
sequential I/0 mode flag, should be given in B.

To read an index block into core
BRS 87

may be used. It takes the address of the block in A and in X
the first word in core into which the block is to be read.

9.2 Other Sequential Files

In addition to drum sequential f'iles, the user has some
other kinds of sequential files available to him. These are all
opened with the same BRS 1, except for the device number.
Available device numbers are

Paper tape input

Magtape ihput

Magtape output

PDP-5 link input

PDP-5 link output

~N oV

The device number is put into X. The unit number, if any, is
put into A. The file number for the resulting cpen file is
returned in A, If BRS 1 fails, it returns an error condition
in A as descrived in Section 9.1. Three error conditions apply
to magtape only:

0 Tape not ready

1 Tape file protected (output only)

2 Tape reserved (see p. 9-8).
BRS 1 also accepts the following three character mnemonics
inastead of the device numbers. Either the name or the number
goes in X for the call.

O

1 PTI paper tape input

2 PTO ‘paper tape output (not available)
3 cpI card input (not available)*

4 MTI mag tapevinput*

5 MTO mag tape output¥*

6 PDI PDP5. input

7 ~ PDO FDP5 output

8 FSI drum input*

9 PSSO drum output¥

10 FIL drum input and output¥

11 LPO 1line printer out (not available)*
12 MDI direct mag tape input*

13 MDO ‘direct mag tape output*

14+ €SI controlling teletype input

15 (CSO controlling teletype output

16 TTI ° specified teletype input

17 TIO0 specifiied teletype output

18 NON nothing

19 I0S subroutine file

20 SNP snooper counters (Berkeley only)

* requires executive status

BRS 1 is inverted by BRS 110, which takes & file number in
A and returns the corresponding device name in X and unit number
in A. '

These files may also be closed and read or writtenm in the
same manner as sequential drum files. The magtape is only
available to'éxecutiVG-type programs.

LDA =1 (end of record)
CTRL =file number

ies available for physical sequential file 5 (magtape output).

Several other controls are also available for maptape files only.

)

These are:

backspace record

forward space file

backspace file

write three inches blank tepe
rewind

write end of file

8 write 15 inches blank tape

N NNV WP

These controls may be executed only by executive type progrems.
I/0 operations to‘the magtape may, of course, be executed by
user programs if they have the correct file number.

An executive program may arrogate a tape unit to itself by
putting the unit number in A and executing BRS 118, which skips
if the tape is not already attached to some other job. BRS 119
releases a tape 80 attached.

It is possible for magtape and card reader files to set
the error bit in the file number. The first I/O instruction
after an error condition will read the first word of the next
record~--the remainder of the record causing the error is ignored.
The magtdpe‘routines take the usual corrective procedures when
they see hardware error flags, and signal errors to the program

~only as a last resort.

The phanfom user's three second routine checks to see
whether a W-buffer interrupt has been pending for more than
three seconds. If so, it tekes drastic and ill-defined action
to clear the W-buffer. BRS 114k also takes this drastic action;
it can be used if a program is aware that the W-buffer is
malfunctioning. |

Direct tape I/0 package. A mechanism for accessing arbitrarily
formatted mag tape 1s available. The appropriate operations are:

BRS 1 open
BRS 2 (or 17 or 2¢) close
BIO block input/output

CTRL control

@

9-10

BIO is used in the normal way, with a word count in A and core
address in X. BIO will not give you more data than épecified

by A. In no case may the block requested cross a page boundéry.

On input, BIO will skip if the word count presented is exactly
right; otherwise, it will not skip, and will leave the number
of words éctually transferred in A and the next core address in
X. The flag bits (EOR and EOF) in the user's file number are
set as with the normal BIO for tapes.

In addition to controls 3-8 for tape in the CTRL operation,
CTRL 9 has been implemented to allow the user to set the mode
for the tape. This operation tekes a § or 1 in B2l for setting
the tape in odd or even parity. (TSS tapes use odd parity.)
B22 and B23 contain the "frame count," a mysterious feature of
the W-buffer. Use one less than the number of 6-bit characters
per word to be shipped. On reading the characters are stored
right-Justified in memory. On writing they are taken out left-
Justified. The word count for transfers covers the numbers of
words in core actually used. When the tape is opened, the mode
is set to odd parity, four characters per word.

Snooper Counters. The Berkeley system has a collection of

hardwere counters which monitor external signals. These may
be opened as a file with BRS 1. In aeddition, two operations
are provided. |
CTRL fn ,
requires & 1 in A, and 1/32 of the number of machine cycles
to be monitored in B.
BI0O fn
reads in the counters.

O

Q

9.3 PFile Control Blocks

Every open file in the system has associated with it a file control
block. This block consists of four words in the following formet:

FA 0 0 3 ' first index block address or O
subroutine address
0 o 15116 23
W Cl ‘ 02 C3)
FTLW 60
D B{PIx|D o U device
T
ol 0 010010
0 2(3 jop 9 9
¥C char |number drum buffer address or O
count| O 0
FB busy count (-1 if file not busy)
Cn = word beingy packed or unpacked
char count = -1 to 2
CH = character oriented
OUT = output
DF = drum file
Drum RX = random access
files -
only RD = read only

ERR = error

9.4 Permsnently Open Files

normal file
subr. files

normal file
subr. file

There are a few built-in sequential files with fixed file numbers:

0 controlling teletype input

1 céntrolling teletype output

2 nothing (discard all output)
100040 - 4nput from teletype n
20004n output to teletype n

These files cannot be opened and need not be closed.

O

10-1

10.0 Random Drum Files

A rendom drum file is identical in physical structure on
the drum to a sequential drum file. The only major difference
is that the non-zero words of the index block are not necessarily
compact. The reason for this is that information is extracted
from or writteh into a random file by addressing the specific
word or block of words which is desired. From the address which
the user éupplies, the system extracts a physical block number
by dividing by the data block size and a location of the word
within the block which is the remainder of this dilvision.
Further division by 14 yields the appropriate index block. A
file may have any number of index blocks. '

A rendom file may be opened by using BRS 1 with a device
number of 10. No distinction is made between input énd output
to a random drum file. A random file may also be closed by
BRS 2, like any sequential file, and CIO, WIO, and BIO msy be
used for input-output to random files. The sequential I/0
mode (input or output) is controlled with BRS 143 and 1uk,

The foliowing additional operations are available:

To read a word from a random file, execute the instructions
IDB =address
DWI =f'ile number

The word is returned in A.

To write a word on a random file, put the word in A and
execute the instructions:

LDB =address
DWO =file number ‘
Block input-output to random files is also péssible. To
input & block, execute the instructions: o
LDX =first word address
LDA =number of words
ﬁDB afirst address in file
DBI =flle number
To output a block of words to a random file, execute the instruction
DBO =file number

@

10-2

with the same parameters in the central registers. These block
input-output operations are done directly to and frdm the user's
memory, &s is BIO. Drum buffers are not involved and the
operation can go very quickly.

It is possible to define a random file which has been
previously opened as the secondary memory file. To do this,

execute the instructions

LDA =file number

BRS 58 ,
The specified file remains the secondary file until another
secondary memory file is defined or until the file is closed.
To access information in the secondary memory, two SYSPOPs are
provided. These POPs work exactly like DWI and DWO except that
they take the drum address from memory instead of requiring it

" to be in B. To read & word of secondary memory_into the A
‘register, the instruction

IAS address o
should be executed. To store a word from A into the secondary
memory, the instruction
‘ SAS. eddress
should be executed. The word eddressed by either one of these
SYSPOPs should contaln the drum address which is to be referenced.
This word may elso have the index bit set, in which case the
contents of the index reglster wlll be added to the contents
of the word to form the effective address which is actually
used to perform the input-output operation.

The mechanism for ecquiring and releasing random drum file
spabe is very similar to the mechanism for allocation of core
memory. Whenever the user addresses & section of & random
drum f£ile which he has not previously used, the necessary blocks
are created and cleared to O. Note that the user should avoid
unnecessarily large rendom drum addresses, since they may result
in the creation of an unnecessary number of index blocks. To
release random drum memcry, use BRS 1k,

O

@

10-3

10.1 Direct Drum Access

An even more efficjent method of accessing infdrma.tion on the
drum is provided by an interface which allows the user to acquire
2K pages on the drum and read or write on them directly. This
space is éssigned from the swapping area on the drum and referred
to directly by its drum address; a bit table privaté to the user
is used for validity checking.

To acquire a 2K page; execute

. BRS 126
with the desired angular position on the drum of the page to be
assigned in the bottom bits of A. If no more space 18 available,
BRS 126 returns without skipping. Otherwise, BRS 126 skips and
returns, in A, the drum address of a 2K page as a word address
(1.e., with the bottom 11 bits zero). A page may be released by
putting this address in A and performing

- BRS 127.

To release all pages acquired in this manner, execute

CLA
BRS 7.

This is done automaticelly by the RESET command in the executive,
as wull‘a.a by RECOVER and by a call for a new subsystem. It
should be noted that DUMP does not preserve pages acquired by BRS 126.

To réad or write on & page acquired with BRS 126, use

LDA =core address
LDB =drum address
LDX =word count

" (BRS 124 to resd%)
BRS 15 to write

O

@

104k

These BR8's preserve all the central registers and normally skip.

A no-skip return indicates an uncorrectable transmission error.

The following restrictions are checked by the monitor and

will result in an illegal instruction trap 1f violated:

1)

2)

3)

The drum address must be a multiple of 256 (decimal)

and lie within some page assigned to the user via BRS 126.
(The latter restriction does not apply to executive programs.)
The transfer must ndt cross a 2K page boundary either

in core or on the drum.

it 18 11legal to attempt to read into a read-only page

with BRS 124 (this produces & memory trap if violated).

@

@

11-1

1L.0 Subroutine Files

An addition to the above-mentioned machinery for performing
input-output through physical files, a facility is provided in
the system for making a subroutine call appear to be an input-
output request. This facility makes it possible to write a
program which does input-output from a file and latér to cause
further processing to be performed before the actual: input-
output is done, simply by changing the file from a physical to
a subroutine file. A subroutine file is opened by executing the

instructions :
LDX parameter word + subroutine address
BRS 1

This instruction skips or returns an error code, as for sequenﬁial
files. The opcode field of the parameter word indicates the
charecteristics of the file. It may be one of the following
combinations:

11000000 Character input subroutine

11100000 Character output subroutine

- 01000000 Word input subroutine
01100000 Word output subroutine

I/0 to the file may be done with CIO or WIO, regardless of
whether it is a word or a character-oriented subroutine. The
system will take care of the necessary packing and unpecking
of characters. BIO is also acceptable. v

The opening of a subroutine file does nothing except to
create a file control block and return a file number in the A
register. When an I/O operation on the file is performed, the .
subroutine will be called. This is done by simulating an SBRM
to the loeation given in the address field of the X register
given to the BRS 1 which opened the file. The contents of the
B and X registers are transmitted from the I/O SYSPOP to the
subroutine unchanged. The contents of the A regiater may be
changed by the packing and unpacking operations necessary to
convert from character-oriented to word-oriented operations or
vice versa. The I/0 subroutine may do an arbitrary amount of

C

1l-2

computation any mey call on any number of other I/O devices or
other I/0 subroutines. A subroutine file should not call itself
recursively.

When the subroutine 1is ready to return, it should execute
BRS 41. This operation replaces the SBRR which would normally
be used to return from e subroutine call. The contents of B
and X when the BRS 41 1s executed are trensmitted unchanged back
to the calling program. The contents of A may be altered by
packing and unpacking operations. A subroutine file is closed
with BRS 2 like any other file.

In order to implement BRS L1, it is necessary to keep track
of which I/0 subroutine is open. This information is kept in
8ix bits of the PAC table. The contents of these six bits is
transferred into the opcode field of the return address when an
I/0 subroutine is called, and is recovered from there when the
BRS 41 is executed.

The user should be wearned that a subroutine file should
not be used by a progream in a different address space from the
subroutine itself. In particular, subroutine files may not be
given to the BRSs which involve acccess to named files (described
in the next section).

12.0 File Naming Systenm

Because of the possible conflicts which may arise when
several users are simultaneocusly trying to access the same
peripheral device, such devices cannot be handled directly by
users at the level offered by BRS 1 -- which is available only
to programs with executive status. At the user level, storage
devices can only be referenced in an indirecf manner, by writing
or reading a "file."

Files are the primary means by which the user establishes
continuity between one computer run and the next. A file is.
any named block of information which the user finds it convenient
to regard as a single entity; the commonest example of a file
is a program. To provide a check against inappropriate use,
files creatéd by the Exec and TSS subsystems are cidssified,
according to the nature of the information in them, into one
of four types, numbered 1 to 4. This type number is carried
along with the information content and may be checked whenever
the file is referenced. o

The file types are:
1. Core Image - The information in this originates from

specified segments of core memory.
The information has the form of an assembled,

2. Binary
but unloaded program.
3. Symbolic - The information is of a form which can be
| readily listed on some printing device.
4, Dump - Comprises all the information in memory
necessary to restart the user from his
current situation, i.e., the situation at
_ the time of creation of the dump file.
Symbolic information may come directly from péper tape or
teletype. These devices may be referenced as type 3 files by
using the name of the corresponding physical medium, viz. -
PAPER TAPE
TELETYPE

12-2

These names are built into the system and are always appropriately
recognized.‘ Another built-in file name is
NOTHING »

which always contains precisely nothing and whose function is to
act as an infinite sink in which limitless unwanted.output can
be lost.

A commoner source for symbolic files is the output from
some subsystems, notably the text editor, QED.

Type 2, binary files normally arise as the output from the
machine-language assembler ARPAS. S

Until the actual process of output from the subsystem occurs,
identification of the information is handled by‘the subsystem
and is usually implicit since the subsystems can handle only
one file at a time. However, when the information is ejected
into a context involving many other blocks of information of a
similar kind, some explicit identification must be attached to it.

12.1 File Naming

The names which the user is free to invent snd assign to
files are of two types:

1. Permanent names

2. Scratch names

Scratch names differ from permenent names in that they and
the files associated with them are lost when the user leaves the
system, using the LOGOUT command; they are otherwise treated
identically.

A permepent name is an arbitrary string of characters not
beginning with / or :. A scratch name is an arbitrary string of
characters beginning with / or :. To those users who have drum
file privileges, a / identifies a drum file, : a disk file.

As pérmanent names we have -

ABC
PROGRAM 1
124
while as scratch names we have -
/ABC
421/

O

12-3

Any permenent or scratch file name may be quoted by surrounding
it with single quote marks. Thus, 'ABC' and '/001/' are quoted
file names. The quoted name refers to exactly the same file as
the unquoted one; it differs only in the way it is recognized by
the exec. Control A (backspace) is legal on any name being typed‘
to the file system unless command recognition is takihg place.

When reference is made to an ungquoted name, the exec will
anticipate the user and consider the name to be fully delivered
as sooh as it has received sufficient characters to distinguish
the neme from sall others currently defined by the user. This
means that a new name can never be introduced in'its'unquoted
form. A quoted name, on the other hand, is always accepted in its
entirety from the user. The initial and terminal quotes are
then removed end the name compered with the directory of names
currently defined by the user. If it matches one of them, it is
taken to refer to that file, just as though it had been presented
in unquoted form. If it is new, however, it will normally give
rise to an error message unless it appears in one of the
following contexts: | |

a) In the DEFINE NAME command (c.f. Doc. R-22, Section 5.5)

b) As an oﬁtput file name, in which case a new file with

the specified name will be created to hold the output.

- For example, let XYZ be the name of an existing file and

/123 be a new unattached file name. Then the exec command

@COPY XYZ TO '/123'.
has the effect of creating a new scratch file, called /123, having
the same information content as XYZ. If /123 is, however,
already attached to some existing file, then the information
content of that file is replaced by that of XYZ.

In summary, it will be seen that the exec's file name
recognition apparatus works in two ways, depending essentially
on whether the name is quoted or not. Quoted neames must always
be given in entirety; the exec waits for the terminating quote
before attempting to recognize the name. Unquoted names are
anticipated; the exec recognizes or rejects them as soon as it
can, insisting that they match some name already in the user's
directory of file names. Note that the BEGINNER, NOVICE and
EXPERT commands apply to file name recognition (see R-22,Section 5.7).

O

12-h

12.2 Accessing Other Users' Files, Special Groupé

The naming system described is adequate to reference all
the files belonging to the current user, in whose name the exec
was entered. However, to refer to files belonging to another
user, it is possible to augment the file name by that user's
name together with, optionally, a special accessing code called
the group name.

To do this the basic file name must be prefixed by one of:

(< user name >) ‘ '

or (< user name >, < group name >)
Thus for example:

(JONES) 'FILEL!
or (JONES, GROUPL) 'FILEL"

When such a string as the last is collected from a teletype
by BRS 15 or 16, the characters ",CROUPL" are not echoed to the

teletype so that the secrecy of the special group name is preserved.

The access that any other user may have to each of Joneg' files
ig in the hands of Jones himself. Jones may declare that a
member of the public at large who tries to access his 'FILELl'
using (JONES)'FILEL' has entire (read-write) access, read-only
access, or no access at all. It is also open to Jones to
define independently a greater degree of acceésibility to a
user who supplies the group name. o
Special groups can be created by BRS 61 and the command ‘
SET MODES FOR FILE (R-22, Section 5.5) or deleted by BRS 62 and
the same command. |
BRS 61 - Define Special Group
Tekes a string pointer in AB.
The string is an arbitrary string of characters and is taken to
define a new sﬁecial-group name. The BRS assoclates with it a
number, n, in the range 1< n< 15, which it skip returns in A.
A file may»then be placed in that special group by setting this
number in the appropriate bits of the file mode WOrd (see BRS 48).
A uéer mey have up to 15 currently defined, distinct special
groups; an attempt to define more results in a no skip return with
A=0. An attempt to define an already existing special group
name also results in & no skip return, but with the group number
in A. ‘ ;

@

12-5

BRS 62 - Delete Special Group

Takes a special group number in A.
The associated special group name is8 deleted and the number meade
available for reassignment to a new name. All files belonging
to the special group are released from it. If no name is
attached to the number, the BRS has no effect.

12.3 Pseudonyms

By me@ns of the command USE NAME it is possible for a user
to insert in his file directory e pseudonym, that is, a name
which, instead of being a tag for a real file, is a tag for
another name possibly including a user name and group name. If
he later uses the péeudonym, the action taken is ekactly the
same as if he had typed the entire name for which the pseudonym

stands.

12.4 Doing I/0 to Files, File Numbers

The file name is an unwieldy and inconvenient handle for
the I/0 routines to use in transferring data. These routines
instead reference the file by a compact, l-word file number
which is more closely related to the file's whereabouts. Thus
system subroutines are provided to assign to a given file name
some temporary file number. |

The user may find it useful to remember that the system
subroutines which perform information transfers to and from
sequential files are the same for input as for output. The
distinction is carried by the file number with which they are
used--whose character is in turn determined by whether it was
returned by BRS 15 (input) or BRS 16 (output). Hence a program
which was designed to output information can, without ill-effect,
be delivered an input file number. The effect will be to lose
the cheracters which the program would be trying to output, while
teking in characters in their place--these too, due to the nature
of the program, will in general be ignored and lost.

Names are recognized and a file number provided, if required,
by the system subroutines BRS 15, 16; they may be deleted by

QO

12-6

BRS 63. The preceding description of the manner in which file
names are recognized largely assumes that they are being typed

in on a teletype. They may, however, be presented to the BRS's
as & ready-made string of characters in core. Entry parameters
for the BRSs include a string pointer to a string in core
together with an input-file number (most commonly teletype). The
character string may be null or an initial part of a file name

or an entire file name. In the first two cases sufficient
charecters are appended from the input file to ensure recognition
or rejection of the name. '

(A Remark on "Random" Files on Tape

Random and sequentisal files may be stored and accessed with
equal facility on "random" storage devices, such as the drum
and disk. On the other hand sequential devices, Such a8 magnetic
or paper tape, cannot be conveniently or efficiently accessed
in the manner of random files and are restricted to holding only
sequential files. However, the command 'COPY FILE' will allow &
user to copy information from an existing random file, say on
the drum, to & sequential but has a special format which does
not allow it & sensible interpretation as a sequential file but
permits the original random format to be restored when it is
copied back to a random device. Such a "random" file on a
sequential medium will result in the return of the apparently
paradoxical information, 1-0 in bits O,1 of X when the file is
opened by BRS 15, 16. Before accessing information in such a
file the user should copy it (using the Exec command or BRS 92)
to a non-sequential medium.]

12.5 Opening Input Files

BRS 15 ~- Open named file for input:

Takes in A a control word

in B the address of a string pointer, or @

in X a dual file number.
The function of this BRS is to recognize an existing file name,
optionally, open the file for input and return a file number for
uge with subsequent date-input commands.

@

12-7

Designation of the File

The string addressed by B must be the complete or incomplete
name of a predefined file. If the name is incomplete, cheracters
will be appended from the input file whose numbef is given in
the least significant 12 bits of X -~ until sufficient characters
are available to determine uniquely a file name (or no such name).
If the file name is unquoted so that prerecognition occurs, the »
"tail" of the name is echoed back to the output file whose number
is given in the most significant 12 bits of X.

If B=0 on entry a null string is assumed and characters
collected from the input file are not transmitted to the caller's
memory. If bit O of B is set, the string delivered is considered
null--its position being defined by the, first word of the string
pointer. Unless B=0O on entry the completed or, in the case of
non-recognition, partially completed file name will be transmitted
to the caller's memory. If a pseudonym was delivered, it will
be replaced by the string for which it stands.

Unless the file name was complete on entry (1l.e., no charac-
ters need be taken from the input file), a terminating character
must be delivered to confirm or abort the file name. Confirming
characters are those with an internal code représentation 0 to
168, also semicolon, tab, line feed and carriage return; the
aborting character is 7. All other characters cause 7?7 to be
output and are otherwise ignored.

Action:
This is dependent on options which are specified by bits 1

and 2 of A on entry. These are: -

Bit 1, 4if set, suppresses opening the file (no file number
is returned)

Bit 2, if set, suppresses the need for a terminating
character; when these bits are not set, the action is as
follows:

If the neme is recognized and a valld terminating character
is received, the file is opened for input. There is a skip
return with o

In A, a file number
In B, the terminating character
In X, is a composite word comprising --

@

1. TAPE or PERMANENT FILES

12A-1

WORD O U ' PILE LENGTH IN WORDS
) ,
WORD 1 TAPE FILE POSN | DATE LAST WRITTEN
y) Fl i L
WORD 2 ‘Rllﬁm U|TYPE| W |SGN|U|S |U
WORD 3 | TAPE SYSTEM NUMBER DRUM ADDRESS
.] L
0) 1 18
7 % ////
Ma : Z L
;;fsfﬁg 7. // l 4/7///%
SR = sequential or random 1 = random
PRA = private accessibility 1 = read only
PUA = public accessibility 0 = denied to public
1 = public reed only
S 2 = public read and write
SGA = special group accessibility O = read and write
o 1 = read only
SGN = special group number 0 = none
S = status 0 = file permanently on drum
1 = file on drum
2 = file on system tape
3 = file on private tape
U = unused

2. SCRATCH FILES
WORD 1 = -1

WORD O = O, WORDS 2,3 as for TAPE FILES

3. BUILT-IN FILES
WORD 3 = -2; WORD 2 = O
a. Device WORD O = O

WORD 1 [9 to 11] = no. of tape unit
WORD 1 [12 to 17] = device no (0/P)

"WORD 1 (18 to 23]

i ok

device no. (I/P)

12A-2

) b. Permanent file no. WORD O # O

WORD 1 [6 to 11] = file no. (O/P)
WORD 1 [18 to 23] = file no. (I/P)

4, SPECIAL GROUPS
WORD 2 -1 .
WORD O o] WORD 1 = creation date WORD 3 [20 to 23] =

group no.

t

it

5. PSEUDONYMS
WORD 3 = -1
WORDS 0,1 = string pointer to real string WORD 2 =0

Description Block Format

@

!

12A-3

FILE DIRECTORY DESCRIPIION

(A) PREAMBLE AND STORAGE ARRANGEMENTS

0 FLIH
1 CFTA
2 SGUS
3 FDIX
FUNO
5 BSS
6 HIL
7 EHIL
10 FDSS
C 12 EFDSS
13

ZRO
ZRO
ZRO

SRO
ZRO

ZRO

ZRO

- ZRO

ZRO

ZRO
ZRO

File directory length

Address of compressed file input table (CFIT)
(Bits set to indicate special group numbers
in use)

Drum index block address for this file directory
User number -

Address of beginning of description block
storage " :

Beginning of hash table (BRS 5,6 table)

End of hash table '

Character address of beginning of string
storage (WCH table)

End of string storage

Garbage collection option

The remaining parts of the file directory appear in the

following order:

Hash table (HTL, EHTL)
String storage (EHTL, BSS)
File description block storage (BSS, CFTA)

1284

USER DIRECTORY DESCRIPTION

(A) PREAMBLE AND STORAGE ARRANGEMENTS

(B)

(c)

O BUHT

1 EUHT

2

3 BUDSS
EUDSS

5 .

6 BUDBT

7 BUDB

ZRO
ZRO
ZRO
ZRO

ZRO
ZRO

ZRO

ZRO

Beginning of hash table (BRS 5,6 table)
End of hash table

BRS 5,6 link

Character address of beginning of string
storage (WCH table)

End of string storage

Garbage collection option

Address of beginning of description block
table

Iength of each user description block

The remainder of the directory eppears in the following order:

Hash table (BUHT, EUHT)
String storage (EUHT, BUDBT) ‘
User description blocks (BUDBT, end of directory)

TYPICAL HASH TABLE ENTRY

STRING POINTER TO

USER NAME

USER NUMBER

TYPICAL DESCRIPTION BLOCK ENTRY

HTA
FDL
DA
AW
PV
CTW
LIW

AV Fw = O

ZRO
ZRO
ZRO
ZRO
ZRO
ZRO
ZRO

Address of hash table entry

File directory drum address
Maximum drum block allowance
Access word

Pagsword hash code

CPU time word (60ths of a second)
LOGIN time word (seconds)

ACCESS BITS ARE

AV F WP O

WAIT
IDIOT:}
PRFFLG
XMOK

_ NIFFLG
- UrTFLG

OPIFLG

BRS 37 mode

permanent file flag
exec mode OK

new tape file flag
new files to user tape
operator flag

124-5

12-8

In bits 6 to 23, the file length

In bits 3 to 5, the file type

Bit 0 is set if the file is random

Bit 1 is set if the file is not stored on a
sequential medium.

Error Conditions

All error conditions are followed by a no-skip return with an

indicator in X; A and B are undisturbed.

-5<X<-1 shows that the file could not be opened. The possible
reasons correspond one-one with those associated with o
no-skip return from BRS 1 with -2<A<2 (see pp. 9-1, 9-7).

X=1 This exit occurs if the name given is not a predefined
name ih the specified user's file directory.

X=2 Indicates that the file name was aborted by delivering
? a8 a terminating character. |

X=0 Any such error is accompanied by one of the following
'error messages' being sent to the command output file

(normally the teletype).

?
ILLEGAL USE OF PSEUDONYM
-NOT PUBLIC
-NO GROUP NAME ATTACHED
-WRONG GROUP INAME
When the requested file exists on magnetic tape it is possible
to receive about 20 different error messages, most of which are
self explanatory. The position check message, "(PC: n)" means
only that the tape has reset its position after becoming "lost"

and should be of no concern.

12.6 Opening Output Files

BRS 16 - Open named file for output

Takes in A a control word

In B the address of a string pointer, or @

In X a dual file number. _
This BRS is provided to reed an existing or new file name and,
optionally, open the file for output and return a file number for
use with subsequent data~-output instructions.

)

12-9

Designation of the File

The file name is obtained from B and X in exactly the
menner of BRS 15 (q.v.) except that if the name is enclosed
between quotes and is not delivered in association with some
other user's namé, then it may be new.

Action

This is again dependent on the control word in A, on entry.

Bit 0, according as it is O or 1, specifies that the file
to be created 1is sequential or random.

Bit 1 is normally zero, to indicate that the specified file
should Be opened and a file number returned in A. TIf the user
does not wish to open the file this bit should be set.

Bit 2 if set suppresses the need for a terminating character.
It also suppresses output of the message OLD FILE or NEW FILE,
which is normelly produced after identification df a quoted
file name.

Bits 3 to 5 = t, indicate the file type.

The type of & new file is always set to be t.

The type of an old file is changed to t unless t=0, when the
0ld file type is retained. An attempt to open the teletype as
anything but a type 3 flle is an error.

Bits 6 to 23 = 3, significant only for tape files.

S 18 taken to be the number of words of information sbout to be
written. If a new tape file is specified, a space of 3/2 S
words is reserved after the current last file on tape. For an

- 0ld tape file, S is compared with the amount of tape space

currently reserved for the file. If it is greater, an error
message - TOO SHORT is produced, followed by a no-skip exit;
the file‘is not opened.
The normal return from the BRS is with a skip,‘the same
parameters being returned in A, B and X as for BRS 15 viz.
in A a file number number (1if opened)
in B the terminating character (if delivered)
in X a composite word comprising the file length, type
and logical structure (random or sequential)--See
BRS 15.

R-21
12-10

Error Conditions

C

All error conditions are followed by a no-skip return with
an indicator in X; A and B are undisturbed. ‘
-5<X<~-1 shows that the specified file could not be opened.
The possible reasons correspond one-one with those
. agsociated with a no-skip return from BRS 1 with
-2<A<2 (see pp.9-1, 9-7).
X=0 This exit follows the printing of one of the following
error messages on the command output file (in addition
to the possible messages given for BRS 15):

READ ONLY

WRONG TYFPE

FILF TOO SHORT
FILE DIRECTORY FULL

=] if the file name is new and either unquoted or is
delivered in association with the name of another user.
X=2 if the abort terminator (?) is delivered.
Notes:

1) Although new tape files for the ordinary user will be created
on the standard user's tape, some users can specify the
tape on which a new flle is to be created. For such users
a message

TAPE SYS. NO. =
is printed and a decimal number must here be delivered
through the command-input medium.

2) 1If the file name is quoted and not built in, one of the
measaées OLD FPILE or NEW FILE is sent to the command output
medium. As described above, this message may be suppressed
by setting bit 2 of A on entry.

3) An attempt to change the logical structure of an old file
(from random to sequential or vice versa) will elicit a
message tb notify the user bvefore the name terminator is

delivered.

)
)

12.7 Miscellaneocus File Operstions

BRS 63 - Delete name from file directory
Takes in B a string pointer
in X & dual file number

12-11

The entry parameters are used to designate a name in the
file directory in the manner of BRS 15. The name is removed
from the directory subject to the following conditions:

A built-in file cannot be deleted. The BRS will, however,
allow the user to delete all its names except the last.

When a pseudonym is delivered to the BRS the pseudonym
itself is lost. When the last name of a file is deleted,
the file's contents are also lost.

A successful deletion 1is followed by a skip return.

A no-skip return indicates that the attempt to delete
failed. The contents of X will indicate the reason for failure
as follows:

X=3,-2,Ql correspond to no-skip returns from BRS 1 with
A=-2,-1,0 respectively. Such an exit results
only from an attempt to delete s drum file.

X=0 | indicates an attempt to delete the last name of
- a built-in file.
X=1 - if the name is not in the file directory.

BRS 60 -vInterrogate file description block
Takes in B the address of a string pointer
in X a dual file number
The entry date are used, in the manner of BRS 15, to determine
a flle. The first three words of the description block for that
file (see p. 12A) are skip-returned in A, B and X respectively.

BRS 48 - Set file modes

Takes in A a file mode word

in B a string pointer address

in X a duel file number.
B and X are used, in the manner of BRS 15, to determine a file
name. BRS 48 will then use the information in A to set or change
the special group membership, type and accessibility of the
specified file (which must belong to the caller).

All of these characteristics are determined by bits 1 to 4, and

6 to 16 of the third, "mode", word of the description block

12-12

associated with the file (see p. 12A). BRS 48 directly replaces
these bits by the corresponding bits of A after checking A for
consistency and existence of the specified special group.

A successful mode change is denoted by a skip return,
failure by & return without skipping.

12.8 Opening Scratch Files

Scratch files are all kept on the drum. They differ from
ordinary files in that they disappear completely when the user who
created them logs out. A fixed amount of drum Space is available
to each user for scratch files, which he may allocate as he seés
fit. If he attempts to exceed the allocation a message will be
given.

A seratch file may be created by BRS 16 or any of the commands
which create & new file, by delivering to them a new'scratch
name (see 12.1). Alternatively, for a scratch file with a name
of the form /ddd/ where d is any decimal digit, the elaborate
string delivery and recognition procedure of BRS's 15,16,63
can be bypessed by using BRS's 18,19,65 respectively. Instead |
of & string pointer and dual file number, these three BRSs take,
for file identification, an integer in X. The decimal equivalent
of this number is a string of three digits enclosed between
slashes is then used as a file name to refer to the file in the
conventional way.

BRS 18

Takes in A a code word

in X an integer
This provides an alternative way of referencing and opening for
input scratch files whose names are decimal integers.

The number in X is transformed into its equivalent string
of three decimal digits enclosed between slashes, 5 characters
in all, (a number which exceeds 999 is taken to designate the
string /999/). This string should be a predefined name in the
caller's file directory. The subsequent action of this BRS is
to open the file for imput in exactly the manner of BRS 15,
i.e., dependent on bits 1 and 2 of A; the return conditions are

the same as for BRS 15.

12-13

BRS 19

Tekes in A a code word

in X an integer
By means of this BRS & scratch file with a decimal-integer name
can be opened for output. As for BRS 18, the number in X is
first transformed to & string of three decimal digits enclosed
between slashes. The name is then treated as & possibly new
name for a scratch file, belonging to the caller, in exactly
the menner of BRS 16. Bits O to 5 of A also have the same
significance as for BRS 16. |

BRS |
Takes in X an integer
The integer is converted into a string of three decimal digits,
as in BRS 18, 19. The action thereafter is exactly as for
BRS 63, successful deletion being indicated by a skip return.

12.9 Format of the File Directory, Some Implementation Details

File names, group names and pseudonyms are containeg in a
hash structure of the type described in the Section 14 of this
manual. The first two words of each hash table entry are the
conventional string pointers to the file neme. The third word
(the string "value") is & pointer to a b-word "description
block." In these four words is held all the information
necessary to characterize the name, whether it be the name of
e drum file, tape file, special group, pseudonym, etc. Notice
that several entries in the hash table may point to a single
description block; the associated names are then synonyms for
the same object, which can be referenced by any one of them.

The commend DEFINE NAME creates a new name to point to an
existing description block; conversely DELETE NAME detaches the
name from its description block, the description block itself
18 lost only if this was the only name pointing to it.

The format of & single hash table entry with stteched file
deseription block is sketched on page 12 A.

12-1h

Executive commands and BRSs are available for interrogeting
and changing parts of the user's file directory. The commands
FILE DIRECTORY and SET MODES FOR FILE are described in the
menual for the TSS Executive (Document R-22). The corresponding
BRSs are BRS 60 and 48.

12.10 Miscellaneous Services

BRS 92 ~ Copy file to file

By means of this BRS informetlon can be copied from one file
to another. The entry parsmeters consist of an input file number,
an outpuﬁ file number and some bits to determine the nature of
the files. If the information transfer is successful,there is &
skip~-return; if unsuccessful, a no-skip return, possibly preceded
by a message. '

On entry, the contents of A are taken to refer to the input
file as follows:

bits 15 to 23 give the input file number

bits 3 o 5 give the file type

bit 1 is 0 for a seduential‘device (tape, teletype)
‘ or 1 for & random device (drum, disk)
bit O is O for a sequential file, 1 for a random file

The contents of B refer to the output files. Only bits O,
1, and 15 to 23 are significant and have a similar interpretation
to the corresponding bits of A. The necessary information for
setting bits O and 1 correctly is returned by BRS's 15, 16 as
bits @, 1 of X.
The copy will be successfully terminated when any of the
following terminators is read from the input file.
1) Input file sequential
&) An EOT (lth) character, if and only if the input file
is a teletype.
b) An EOF (1378) character for opher type 3 files.
¢) 2 consecutive termwords (276575378) for all other
sequential files. ’

2) Tnput file random
a) 1 termword if the file is stored on a sequential device.
b) Otherwise the copy terminates when the end of the
index~block chain is reached.
The return after e successful copy ie with & skip.

Errors

Errors may be

a) Calling BRS 92 with inadmissible parameters.

b) Unusuel conditions detected during a data'transfer.
Errors of type () may be any one of the following:

Attempt to copy & sequential file to & random file.

Attempt to copy e "random" file on tape to a seQuential file.

Attempt to copy a non-symbolic file to teletype.

Attempt to copy directly from magnetic tape to a teletype

or vice-versa.

They are all followed by & no-skip return.

Frrors of type (v) are all signalled by a message, which is
sent to the command output medium. The messages may be any of':
-END OF TAPE
UNTIMELY EOF IN INPUT
UNTIMELY EOR IN INPUT
RANDOM FILE TOO BIG, TRANSFER TERMINATED AT ADDRESS <r>

FATLED TO READ INDEX BLOCK

INPUT ERROR

OUTPUT FRROR ,
A1l but the last two are followed by & no-skip return. In the
cage of the laat two the transfer continues from the point at
which the transfer error was detected until the entire file is

copied.

BRS 93 - Make & "save" file

Takes in A the address of a core-bounds list
in B the address of a 2-word map

in X a sequential output file number

12-16

This BRS may be used to preserve the contents of specified
ranges of core (in the map given by B) to the output file given
by X; note that this file must be sequential. '

The core bounds list addressed by A, is a contiguous list
of positive numbers terminated by any negative number. The first
entry of the list is taken as a "starting address” - and is the
address to which & transfer of control will be made when the data
preserved by this BRS is read back into core by the GO TO command.
Subsequent entries in the list are taken in pairs--each pair
defining a renge of memory from which information is to be saved.
The two addresses in each palr may be given in either order.

All addresses are taken with the mep whose core address is given
in B~-if B 18 zero, it will be assumed that the user's current
program memory is to be saved.

If the information is successfully transferred to the file,
there is a skip return. Any failure in the data transfer results
in an immediate no-skip return.

The formats of the core bounds list and the resultant save

file are:

Format of Core Bounds List Tormat of Save File

Starting Address 1, =nin (ml,nl)
my u, = max (ml,nl)
ny Starting Address
B2 ;
n data from
2 core range ll to uy
1
it .,
“k , date from core 12 to u,
negative number :
data from core lk to v
term word
term word

(N

Return No Skip: A

12-17

BRS 94 - Restore a save file to core

Entry A,B = relabeling
X = file no. of sequential save (type 1) file
The save file, which should have the formet describved in
BRS 93, is transferred to the memory given by the map in A,B.
If the transfer is successful, there is a skip return with the
starting address (see BRS 93) in A end the file number in X,
An unsuccessful data transfer results in a no-skip return.

BRS 131/132 - (open tape for input/output) [privileged]

Given in: A = the desired tepe position (0<A<256)
B = the user number of the file owner (BRS 132
only) o
X = the tape system number or the tape unit
number with bit 0 set.
error flag (-2<A<18)
All errors result in a typed message
Skip: A = file number
user number of file owner

#

o
i

X = tape unit number

The tape can be open for input (BRS 131) without executivity
being set. In fact, BRS 131 can be executed by users with

operator privileges even if they do not have executive privileges.

If the desired tape is not logically mounted, it can still be
accessed by loading the unit number in X and setting Xo. This
will cause the tape status vector to record the tape system
and reel numbers. No new files can be created with BRS 132.

A more complete description can be found in M-17.

13-1

13.0 Miscellaneous Executive Features

The executive provides a number of BRS's which are sérvices
for the user. Many of these are incorporated in the string
processing system or in the floating point package and are
described in the next two sections.

To input an integer to any radix the instructions

ILDB = radix
IDX = file
BRS 138

may be executed. The number, which may be preceded by a plus

or minus sigﬁ, is returned in the A register and the non-numeric
character which terminated the number in the B register. The
number is computed by multiplying the number obtainéd at each
stage by the radix and edding the new digit. It is therefore
unlikely that the right thing will heppen 1f the number of digits
is too large. If no digits are typed, the sign bit of B is set.

To output a number to arbitrary radix the instructions

IDB = radix
IDX = file
ILDA number
BRS 36

may be executed. The number will be output as an unsigned 2uL-bit
integer unless the sign bit of B is set, in which case it will be
signed. If the magnitude of the radix is less than 2, an error
will be indicated.
To get the date and time into a string, the operations
LDP PIR
BRS 91
may be executed. The current date and time are appended to the
string provided in AB and the resulting string is returned. The
charecters appended have the form:
mm/dd/yy hhmm:ss
Hours. are counted from O to 23.
BRS 39 returns the date and time in AB as six 8-bit bytes

giving year, month, day, hour, minute, second, respectively.

13-2

BRS 123 Read teletypc and user number

Entry X = -1 or teletype number
Exit A = user number or O.
B = job number or O.
£ = teletype number
BRS 97 Find user's teletype
Entry A = ~1 or teletype number
X = user number
Exit No skip: user not entered; A,B,X undefined
Skip:
A = teletype number
X = user number

This BRS may be used to find on which telelypes & user is
entered. A search is mede to see if the user whose user number
is given in X is entered on any teletype with a number higher
than that given in A. If no such teletype is found, the BRS
does not skip on return. Otherwise, therc is a skip return

with the next higher such teletype number in A.

BRS 104 - Find user number from user name

Entry B = string poilnter address
X = dual file number
Exit No skip: A,B,X undefined, illegal user name

Skip: A = X = user number

BRS 104 uses B and X to collect a user name in the same
manner as BRS 15, If an illegal name is typed, theré is a no-
skip return from the BRS. The characters typed are appended to
the string (if any) given on entry. Otherwise, there is a skip

return with the required uger number in both A and X,

13-3

BRS 105 Find user name from user number

Entry A,B
X

H

string pointer
user number

]

This BRS reverses the action of BRS 104, If the user number
is valid, it appends to the string addressed by A,B the users name
corresponding to the given number and returns with a skip.

If the‘user number is not valid the BRS does not skip and
A,B,X are unchenged.

BRS 100 Read subsystem relabeling

Requires in B the address of a string pointer to the subsystem name
~ in X a dusl file number or -1, ,
Returns skipping with the subsystem relabeling in A,B and
the starting eddress in X,

14-1

1k.0 String Processing System

The string processing system (SPS) consists of eight SYSPOPs
and six BRSs. SPS strings are stored three 8-bit characters per
word. Strings are addressed by two-word pointers. The first
word contains the character address of the character before the
first character of the string. The second word contains the
character address of the last character of the string. The
character address of a character is obtained by multiplying by
3 the address of the word containing it and adding 0, 1 or 2
depending on its position in the word. All string pointers
contain character addresses. The character pointers used by
GCI, GCD, WCI and WCH must heve the first 8 bits cleared.

The following SYSPOPs are independent of the hash teble
mechanism which is described later. Any of them may be indexed
or indirectly addressed (as may most other SYSPOPs).

14.1 String Pointer load and Store Operstions

LDP ADDR loads the A and B registers with the contents of
ADDR and ADDR+1. X is undisturbed. STP ADDR stores the contents
of the A and B registers in locations ADDR and ADDR+l. A, B,
and X are undisturbed.

4.2 String Read and Write Operations

GCI ADDR tries to load the A register with the first character
of the string addressed by the pointer pair in ADDR and ADDR+1.
If the string is null or empty (i.e., if the contents of ADDR
is greater than or equel to the contents of ADDR+1), then
nothing is done and the next instruction in sequence is executed.
If the string is not null, its first character is loaded into A
right-justified and the contents of ADDR are incremented by 1,
8o thet the string pointer now points to the string with the
first character deleted. The top 16 bits of A are cleared, and

the next instruction in sequence is skipped. Unless a copy of

142

the original pointer is saved, the contents of thé string are
effectively destroyed by GCI. For example, the code:

" 6cI STRING
BRU pur
BRM PRACESS
BRU * .3

gur ...
will call the subroutine PRPCESS with each character of the
string addressed by STRING and go to fUT after the last character
is processed. To save the contents of STRING, the following
commands could have been executed first:

IDp STRING
3TP SAVE
- ete.

The X register is not disturbed by GCI. The B register is

~ destroyed. Timing: 43 cycles. GCD is in every way similar

to GCI except that the character is taken from the end of the
specified string and the second string pointer is decremented.
WCI ADDR writes the character in the last 8 bits of A on the
end of the string addressed by ADDR. The contents of ADDR+1
are incremented by 1. A and X are not changed. B is destroyed.

To use a WCI in constructing a string, it is necessary to
start with a null string. Suppose the string is to be put into
a buffer called LINE and defined by

LINE BSS 20
The instructions

IDA =T, INE

MUT, =

ISH 23

STA PTR

3TA PTR+1

will meke PTR & pointer to & null string beginning (and ending)
with the first character (not the Oth) in LINE. To start with
the Oth character a SUB=l could be inserted after the LSH. LINE
can now be filled, say from the teletype by

- CIO0 = 0
CWCT PTR
BRU * -2

WCD 18 the seme except that it writes the character on the front
of the strihg and decrements the first polnter.

143

WCH takes a character in A and a table address in the operand

field. The table comprises three words:

ZRO CLB
ZRO CUB
OP ADDR

WCH tries to write a character into the area defined by the
character addresses CLB, CUB. Provided that CUB>CLB, WCH will
write thebcharacter in A into cheracter position CLB+l and
increment CLB. If CLB>CUB the character is not written and
control is transferred to the third word of the table with A and
X undisturbed and the address of the offending WCH in B. This
can be an error trap or an exit to a routine which allocates

more memory, by garbage collection or otherwise, for further WCH's.

14.3 String Compare Operations

SKSE ADDR skips if the string addressed by the pointer in
AB is ldentical with the string addressed by ADDR. If the strings
are of different lengths or have different contents, SKSE does
not skip. This instruction is essentially identical to SKE,
except that it acts on strings rather than numbers. A, B, X
are not disturbed by SKSE.

SKS5G ADDR skips if the contents of the string addressed by
AB is greatef than the contents of the string addressed by ADDR
and ADDR+1l. Comparison is made character by character, and
terminates with the first unequal characters; the numerical,
internal code representation of characters is used to determine
inequality. If the strings are equal for the entire length of
the shorter one, the longer one is indicated as the greater. A,
B and X are not disturbed by SKSG.

1.4 String Tnput/Output

BRS 33 sccepts a string pointer address in A, a file
pumber in X and a "terminal character” in B. It collects
charscters from the file and appends them to the string until
the terminal character is seen; this is not added to the string.
It then returns the updated string pointer in Al; the string

14k

pointer in core is also updated. If bit O of A is set on entry
the string is taken as null with the second pointer equal to the
first. ‘

ERS 34 accepts a file number in X, a word address in A and
& count in B. It outputs B consecutive characters starting with
the first character of the specified word. If B=-1 on entry
characters are output until / is encountered and the character
$ is interpreted as carriage return, line feed.

BRS 35 accepts a file number in X and a string pointer in
AB. It outputs the string to the file.

4.5 Hash Table Lookup Instructions

The hasgh table is & structure for minimizing the effort
required to perform certain scan-and-compare operations when the
operands are strings.

A hash table is a contiguous set of 3-word "augmented string
pointers." The addresses of the first and last-plus-one locations
of the hash table we shall denote by HT, EHT respectively. FEach
augmented string pointer occupies three consecutive locations
of the hash table. Bits 8 to 23 of each of the first two
locations hold the actual string pointer; bits 0 to 7 of these
two words, as well as the entire third word (the so-called string
"value") may hold arbitrary information. Note, however, that
bits 0 to 7 of the string pointer words must be zero if used with

6T or WOI. -

There are three BRSs to perform operations on a hash table:
they are BRS 5, BRS 6, BRS 37. BRS 6 is used to introduce new
strings into the table. BRS 5 and BRS 37 each perform a scan of
the hash teble for a string to mateh a glven string.

Before using BRS 5 and BRS 6 to insert string pointers into
an initially empty hash table, the hash table area must be cleared
to zeros. |

BRS 5 tekes s string pointer in A, B, a table address in X.
The table'compriaes 3 words:

ZRO HT
ZRO EHT
ZRO 0

1h~5

The first two define the hash table bounds, the third is used
for communication with BRS 6.

BRS 5 searches the hash table for a string to match the
given one. If successful it returns in B the addreés of the hash
table string pointer (the string "index")--and in A the string
"value"; it skips on return. If the search is unsuccessful,
BRS 5 returns with A, B unchanged and the addreés of the next
free table entry in word 3 of the table (this will be -1 if the
teble is full). X is not disturbed.

BRS 6 takes & string pointer in A, B and a table address
in X, The table is as for BRS 5. This operation inserts the
string pointer into the hash table at the point determined by
the last BRS 5 which failed (i.e., at the location specified by
the third word of the teble). If this word is -1, there is an
illegal instruction trap. BRS 6 is intended for use only in
inserting into the hash table a string pointer for which BRS 5
Pailed to find a match and should not be used except after a
failing BRS 5, Furthermore, string pointers should not be
placed in the hash table except with BRS 6 (otherwise the secanning
algorithm used in BRS 5 will not work). Note that BRS 6 does not
physically move the characters to which (AB) points.

On exit; BRS 6 returns in B the address of the first word
of the new hash table entry and in A, the "value" word of the
entry; X is not disturbed. To delete a hash table entry, put
-1 (not 0) in the first word. '

BRS 37 tskes a dual file number in A, a string pointer
address in B and, in X, the address of two words containing
table bounds HT, EHT. A dual file number is a single word
holding an output file number in the first 12 bits and an input
file number in the second. If the output file number is zero,
the user's teletype will be used. The table has the same form
a8 a hash table, but the string pointers may be put into it in
arbitrary order; it is not necessary to use BRS 5 and BRS 6.

The behavior of BRS 37 depends on the command recognition
mode currently set in the exec (see R-22, Section 5.5). If the

14-6

mode 1s BEGINNER, the hash table is scanned for a string to
match exactly the given one. If none is found but the given
string matches the initial part of some hash table string,
characters from the input file are appended to it until either
an exact match 1s obtained or & match becomes impossible. The
exit is desecribed below.

If the mode is NOVICE, the hash table is scanned for a
string to match the given one. If none is found but the given
string matches the initial part of some hash table string,
characters from the input file are appended until the string is
long enough either to determine a unique hash table string, with
e matching initial part, or for no match to be possible. In
the former case, if the hash table string now contains three or
less as-yet-unmatched characters, more characters are taken from
input until an exact match is obtained or no metch is possible;
if the hash table string contains four or more as-yet-unmatched
characters these unmatched characters are sent to the output
file. If the input file is the teletype, BRS 37 waits until
ell the characters have been output, and the input file buffer
is cleared before exit.

If the mode is EXPERT the hash table is scanned for e string
to match the given one. If none is found but the given string
matches the initial part of some hash table string, characters
from the input file are appended until the string is long enough
either to determine a unique heash table string, with a matching
initial part, or for no match to be possible. In the former case
the remaining characters of the hash table string are sent to
the output file.

Exits are as follows:

The no-match condition causes a no-skip exit with a string
pointer in AB to the string so far collected; X is'undisturbed.
If 8 match is found there is a skip exit with the address of the

matching table entry in A and the string value in B, X is undisturbed.

The following subroutine illustrates a use of the hash
table facility. A string is input from the teletype and appended
to WCH string storage until a cerriage return is cncountered;

-7

<¥:} it is assumed that string storage does not overflow in the process.

The hash table is then searched for the string; if it is not
already there it is inserted. In any case, an exit is made with
the value of the string in A and the address of the string
pointer in B. On entry X contains the address of the table for
BRS 5, 6. CTL is the address of a table for WCH.

INPUT ZRO INPL
LDA CTL remember beginning of string

STA TEMP
LOOP TCI CHAR
SKE =1558 terminator?
BRU WRITE
LDA TEMP yes
LDB CTL
BRS 5
BRS 6
SBRR INPUT
WRITE WCH CTL
BRU LOOP

15-1

15.0 Floating Point Instructions

This section describes the floating point operations which
are aveilable in the system. SYSPOPs are provided to do floating
eddition, subtraction, multiplication and division and to convert
under format control between the internal floating point repre-
sentation and an external representation as a string of digits,
decimal points and E (for exponent). BRS's exist which perform
input-output and conversion automatically without involving the
user with the external string representation. All these operations
preserve the X register, except input routines which return the
terminal character in X. Most destroy AB by leaving a result
there. ‘ ‘ '

15.1 Tloating Point Representation

A floating point number is held internally as two 24-bit
machine words. The format is
0 1 3B 39 ho W7
o , " -
r MANTISSA ~ EXPONENT

The nmmber is elways normalized: i.e., the most significant
bit of the mantisse differs from the sign bit. All.floating
point operations expect normalized operands and produce normelized
results. Both mantisse and exponent are treated as two.complement
nmbers. The two words of the floating point number appear in
the AB register or in memory in the order indicated.

A floating point mumber is represented externally as a
string of‘characteru. This string has the following form:

[+] [string of digits] [.[string of dlgits)] [E[+1string of digits]
The brackets dndicate optional constituents. At least one digit
must appear. Iubedded blanks are not allowed. The E indicates
that the preceding number is to be multiplied by the power of
10 specified @fter the E. Tn general a floating point number
being?inpmm may teke any form which matches the template above.
On output the form produced will be détermined by the format specified.

15-2

15.2 PFloating Point Arithmetic

There are four SYSPOPs to perform floating point arithmetic.
Each of these takes one operand from AB and the other from M and
M+l where M 1s the effective address of the instruction. The
result is left in AB in normalized form. If its magnitude is
greater than 5.7896044E+76, the overflow indicator will be
turned on and this value will be returned. The overflow indicator
18 not cleared by any of these instructions. In this respect the
floating point POPs behave exactly like the integer machine
instructions: a sequence of operations can be performed before
the overflow bit is tested. The bit will be on if any operation
ceused an overflow. If the mesult is less than 0.803616E-77, it
will be set to 0. No indication will be given.
The four operations are:
FAD Floating add
FSB Floating subtract
FMP Floating multiply
FDV Floating divide
An attempt to divide by O will produce an overflow.
Two SYSPOPa are provided for loading and storing double
words. The words involved need not be floating point numbers,
of course. .
Load pointer: IDP M puts the contents of M and M+l into AB.
_Store pointer: STP M puts the contents of AB into M and M+l.
Three BR8's provide for unary operations involving floating
point numbers.
Floating negate: BRS 21 returns in AB the negative of the
floating point mimber supplied in AB.
Fix: BRS 50 converts into & double precision fixed point
pumber. The integer part appears in A.
The fraction part appears, left Justified,
in B. If the integer is too large, the
most significant bits will be lost. The
integer part is the next smaller integer.
I.e., IP(~1.2)=-2.
‘Flost. BRS 51 converts the integer in A to a normalized

floating point number in AB.

15-3

(;) 15.3 Input/Output Formats and Conventions

Every I/0 operation wllows the user to specify a format in

the X register.

Format specificatlons are based on Fortran

conventions, and are specified as follows:

Significance

Bit of X Fleld Nanme

0-2

3-8

9-14

L
16-23

Examples:

F6.3
E17.9
5

may be provided:
‘ C be the ones used.

Format types:

1l
2

AL — N OV

integer. :

E format with the number right
Justified within the specified fileld.
F format with the number right
Justified within the specified field.
E format with the number left
Justified within the specified field.
F format with the number left
Justified within the specified field.

Number of digits following the decimal
point.

Total field width

If the field width is 0, the I/0 will
be done in free format.

Overflow action.

I/0 file number. O always refers to
the teletype. 1ISC and SIC ignore
thig field.

| 30306000

21121000
10005000

 On input only the W and N fields are significant. Note that
exactly W characters will be read on input (unless W=0). Leading
blanks and any trailing characters are ignored. TFree format
input will accept as many characters as it can in constructing a
number which fits the external representation described above.

The input operations always return a floating point result.

They 8kip unless overflow occurs, in which case they return the
largest possible number and do not skip. Any number of digits

the firsgt 11 digits after any leading zeros will

On output the W field should be made large enough to
acconmodate sign, decimel point, E, sign of exponent and exponent
(if the format type requires any of these elements) as well as

15 -k

the digits of the number itself. See the discussion 6f error
conditions below. The sign is printed only if the number is
negative.

There are two ways to output an integer: (1) integer
format, or (2) F format with O in the D field. The former
requires that the mmber in the A register be in integer form;
the latter expects a floating point number in AB.

Free format output generates between 1l and 16 characters.
If the magnitude of the number is between 1EO and 1E9, ten digits
are output with the decimal point properly placed. Otherwise,
exponential format is used; in particular, the format E15.9. For
example, the following numbers might be generated by the free
format output.

5. 379605400 -145362.5967 5 . 789604L62E+76

15.4 Input/Output Operations

Two SYSPOPs are avallable to convert between the internal
binary representation of a floating point number and its
externsl decimal representetion as a string of characters. The
string is stored and addressed according to the standerd system
conventions. ‘
String to internal conversion (SIC): Characters are read from
the string pointer addressed by the POP under control of the
format in X. The internal representation of the number is
returned in AB. The first character after the number is returned
in X if free format was specified. ;
Internal to string conversion (ISC): The number in AB is converted
according to the formet in X and the resulting external represen-
tation is written onto the end of the string addressed by the POP.
The string pointer is updated.

Two BRS's arc available to do input/output and conversion
at the same time:

Floating input: BRS 92. Input takes place according to the
format word in X. ‘The operation of this BRS is identical
to that of SIC.

15-5

<:> Fleoating output: BRU 53. Output takes place according to the
format word in X. ‘The operation of this BRS is identical to
that of ISC.
15.5 Output Error Conditions
There are four possible error conditions. When.one of these
conditions occurs the following action is taken:
a) Interrupt 5 is genmerated
b) An error code is put into location 2008
c) The indicated corrective action is taken and execution
continues.
Code Condition Action
1 T field is not 1,2,3,4 or 5 Assume 2(E format)
2 Exponent field is too small Discard characters from the
‘ ‘ : left or take overflow action.
3 Integer exceeds 8388607 Use 8388607
in magnitude
(:) 4 Field for F-conversion Discard characters from the
too small left or take overflow action.

If either of error types 2 or I occurs and bit O in the format
word 1s set,then the output field will be filled with *'s,

MONOPN
MONCLS

SSCH
SSIN
DCLR

IOH
FKST
PPAN
CIB
CET
SKI
DOB
EXGIFN
EXGOFN
UABORT
EXSIFN
EXSOFN
CFILE

LNKC
MSGS
SKROUT
ASTT
RSTT
CgB

NUMBER

~N OV Fow e

O @

10
11
12
13
1L

16
17
18

19

21
23

BRI R

29

BRS TABLE

FUNCTION

Open file
Close file

Release memory
SPS search
SPS insert

Release all space acquired
via BRS 126

Close all files

Open fork

Programmed panic

Clear input buffer

Declare echo table

Skip if input buffer empty
Wait for output buffer empty
Symbolic input file name
Symbolle output file name
Close all files

Scratch input file

Scratch output file

Close file

Floating negate

Link TTY

Unlink

Set AM and AI bits

Skip if rubout waiting (exec)
Attach TTY

Release TTY

Clear output buffer

9""") 9"8

5-3

145
14-5
10-3

9-L
3-1
3-6
7-5
7-2
7-5
7-5
12-6
12-8
9-2
12-12
12-12
9-2
15-2
7-6
7-7
7-h
3-6
7-3
7-3
7-5

NAME

FKRD
FKWT

GETSTR
PUTM3G
@UTSTR

GSLAgK

GETNUM

RMDY
RDET
IPRET
RREAL
RDRL
STRL

NROUT
SR@UT
SETFDC
SRIR
FFIX
FFLT
FFI

MRSB
MBEX
SSMF
RFIC

SGDEF
SGDEL

NUMBER

30
31
32
33

36
37

39

41
42
43

45
46
W7

k9
50
51
52
53
54
55
56
57
58
59

61
62

FUNCTION

Read fork

Wait for fork
Terminate fork
Collect string
Output message
Qutput string

Output number
General string lookup
Read number

Reed date and time
Read echo table

Return from I/0O subroutine

Read clock

Read relabeling

Set relabeling

Dismiss on qQuantum overflow
Turn rubout off (exec)
Turn rubout on (exec)

Set fd control word

Read interrupts armed

Fix

Float

Formatted floating input
Formatted floating output

Make or release resident block

Make block executive
Guarantee 16ms computing
Define secondary memory
Read PMT ‘
Read file directory entry
Define special group
Delete speclal group

3-3
3-3
3-3
%3
-l
bk
13-1
14-5
13-1

6-1
7-2
11-2
6-1

5.4
2-3
10-2

12-11
12-4
12-5

EXDEL

EXSFDL
DFDL

EBSM
GBSM

SKXEC
EXDMS
*EPPAN

SAIR
SIIR
MBRO

SET8P
CLR8P
RIEX

DFR

EXRTIM
ECCOPY
ECSAVE
ECPIAC
ECDUMP
ECRECV

NUMBER

&@%8‘

69

70
71
72
73
Th

76
77
78
79
80
81
82

RS LEERVREEIERERS

FUNCTION

Delete named file

Delete scratch file

Delete drum file (contents only)

Enter block in SMT (exec only)

Get SMT block to IMT
(exec only)

Skip if executive
Exec dismissal (exec only)
Economy panic

Arm interrupts
Cause interrupt

. Make block RO

Dismiss for specified time
Sys go '

Set special teletype output
Clear special teletype output
Read execution time

Declare fork for rubout
Time to string

Copy

Save

Place

Dump

Recover

12-10

12-13
9-l

>-3
5=3

6-1

2-5
3-4

4.1
hal
5=-3
6-1

- T-7

7-7
6-1

3-5
13-1
12-14
12-15
12-17

ECFNDU

KB1gg

EXCNUN

EXCUNN

FKwWA

FKTA

RDU

BRSRET
TSOFF

MIDI

CKDOFN

RURL
SURL
TGET
TREL
APMTE
DEMTE
MPAN
RTUN
RDRM

DGET
DREL

NUMBER

88 %3]

1
101
102
103
104
105

106

107
108
109
110
11
12

113
114

116

- 117
118

119
120
121
122
123

: 125
126

128

A-L4

FUNCTION

Find user 13-2
Read subsystem relabeling 13-3
Convert name to user number 13.2
Convert user number to name 13-2
Wait for any fork to terminate 3-3
Read all fork‘statuses‘ 3~3
Terminate all forks ‘ 3«3
Dismiss 5«1
Read device and unit 9-5
Return from exec BRS (exec only) 6-2
Turn off teletype station 7l
(exec only)

Disconnect W-buffer (exec only) 9-6
Skip if no drum files open

Read user relabeling 5«3
Set user relabeling 5«3
Reserve tape unit (exec only) 9-6
Release tape unit (exec only) 9-6
Assign PMT entry (exec only) 53
Release specified PMT entry 5-3
Simulate memory panic (exec only)6-2
Read teletype and user number 13-2

Read 2K block 10-3
Write 2K block 10-3
Assign 2K page 10-3
Release 2K page 10-3

NAME NUMBER

RDBA

SKUEX

WIR
NTOS
MFLSH
RSCP
SSCP
RDSS

STST

129
130
131
132

1133

‘ s

136
137
138
139

~1ho |
1

1h2
143
1k

FUNCTION

Read drum assignment
Position tepe to read file

Position tape to write file
(exec only)

Skip 1f caller executive

Wait for input request
Suppress or allow output
Force drum/core correspondence
Read status of caller ‘
Set status of caller

Read status

Set status

A5

12-17
12-17

7-5
-7

6-2
6-2
9-1
9-1

BIO
7¢O
TCI
BRS
CTRL
SERR
SBRM
STP
LDP
GCI
WCH
SKSE
SKSG
CI0
WIo
wel
FAD
FSB

FDV
EXS

gsT
IST
SAS
LAS

DWI
DBO
DBI
IsC

176

175

174
173
172
171
170
167
166
165
164
163
162
161
160
157

156

155
154
153
152

151
150
7
146
5
Wl
143
142
41

140

SYSTEM PROGRAMMED OPERATORS

Block input-output
Teletype character output
Teletype character input
Branch to system
Input-output control
System branch and return
System subroutine call
Store pointer

Load pointer

Get character and increment
Write character '
Skip on string equal

Skip on string greater
Character input-output
Word input-output

Write character and increment
Floating add

Floating subtract

Floating multiply

Floating divide

Execute instruction in system
mode

Output to specified teletype
Input from specified teletype
Store in secondery memory
Load from secbndary memory
Drum word output

Drum word input

Drum block output

Drum block input

Internal to string conversion
(floating output)

String to internal conversion
(floating input)

9-3

7-2

7-2
Appendix 1
9")"'; 9"6

14-1
W1
-1
14.3
-3
14-3
9-2

9-3

k-2

15-2
15-2
15-2
6-2

7-4

7-U

10-3
10-3
10-1
10-1
10-2
10-2
15-4

15-4

O

GCD
STT
WCD
8TO
BPT

137
136
13%
134
135

Get character and decrement
Simulate teletype input
Write cheracter and decrement
Steal teletype output
Breskpoint (BRS 10)

-2
7-7
142

